Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

buir.contributor.authorUyar, Tamer
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481
dc.citation.epage1355en_US
dc.citation.issueNumber5en_US
dc.citation.spage1347en_US
dc.citation.volumeNumber408en_US
dc.contributor.authorSenthamizhan A.en_US
dc.contributor.authorBalusamy, B.en_US
dc.contributor.authorAytac Z.en_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2018-04-12T10:57:47Z
dc.date.available2018-04-12T10:57:47Z
dc.date.issued2016-02en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractWe report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:57:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1007/s00216-015-9149-5en_US
dc.identifier.issn1618-2642
dc.identifier.urihttp://hdl.handle.net/11693/36935
dc.language.isoEnglishen_US
dc.publisherSpringer Verlagen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00216-015-9149-5en_US
dc.source.titleAnalytical and Bioanalytical Chemistryen_US
dc.subjectFluorescenceen_US
dc.subjectGold nanoclusteren_US
dc.subjectHydrogen peroxideen_US
dc.subjectElectrospinningen_US
dc.subjectNanofiberen_US
dc.subjectSensoren_US
dc.subjectColoren_US
dc.subjectColorimetryen_US
dc.subjectElectrospinningen_US
dc.subjectFluorescenceen_US
dc.subjectGolden_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectHydrogen peroxideen_US
dc.subjectMultilayersen_US
dc.subjectNanoclustersen_US
dc.subjectNanofibersen_US
dc.subjectNanoparticlesen_US
dc.subjectOxidationen_US
dc.subjectPeroxidesen_US
dc.subjectPhotoelectron spectroscopyen_US
dc.subjectSensorsen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectUltraviolet spectroscopyen_US
dc.subjectCharacteristic emissionen_US
dc.subjectConfocal laser scanning microscopeen_US
dc.subjectGold nanoclusteren_US
dc.subjectGold Nanoparticlesen_US
dc.subjectLocalized surface plasmon resonanceen_US
dc.subjectNanofibrous membranesen_US
dc.subjectSensing performanceen_US
dc.subjectVisual colorimetric detectionsen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectartificial membraneen_US
dc.subjectGolden_US
dc.subjectHydrogen peroxideen_US
dc.subjectMetal nanoparticleen_US
dc.subjectNanofiberen_US
dc.subjectArtificial membraneen_US
dc.subjectChemistryen_US
dc.subjectDevicesen_US
dc.subjectElectrochemical analysisen_US
dc.subjectGenetic proceduresen_US
dc.subjectInfrared spectroscopyen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectBiosensing Techniquesen_US
dc.subjectElectrochemical Techniquesen_US
dc.subjectGolden_US
dc.subjectHydrogen Peroxideen_US
dc.subjectMembranes, Artificialen_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectMicroscopy, Electron, Transmissionen_US
dc.subjectNanofibersen_US
dc.subjectPhotoelectron Spectroscopyen_US
dc.subjectSpectroscopy, Fourier Transform Infrareden_US
dc.subjectSurface Plasmon Resonanceen_US
dc.titleUltrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version