Label-free optical biodetection of pathogen virulence factors in complex media using microtoroids with multifunctional surface functionality
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Early detection of pathogens or their virulence factors in complex media has a key role in early diagnosis and treatment of many diseases. Nanomolar and selective detection of Exotoxin A, which is a virulence factor secreted from Pseudomonas aeruginosa in the sputum of Cystic Fibrosis (CF) patients, can pave the way for early diagnosis of P. aeruginosa infections. In this study, we conducted a preliminary study to demonstrate the feasibility of optical biodetection of P. aeruginosa Exotoxin A in a diluted artificial sputum mimicking the CF respiratory environment. Our surface engineering approach provides an effective biointerface enabling highly selective detection of the Exotoxin A molecules in the complex media using monoclonal anti-Exotoxin A functionalized microtoroids. The highly resilient microtoroid surface toward other constituents of the sputum provides Exotoxin A detection ability in the complex media by reproducible measurements. In this study, the limit-of-detection of Exotoxin A in the complex media is calculated as 2.45 nM.