Full electrostatic control of nanomechanical buckling
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Buckling of mechanical structures results in bistable states with spatial separation, a feature desirable for sensing, shape configuration, and mechanical computation. Although different approaches have been developed to access buckling at microscopic scales, such as heating or prestressing beams, little attention has been paid so far to dynamically control all the parameters critical for the bifurcation—the compressive stress and the lateral force on the beam. Here, we develop an all-electrostatic architecture to control the compressive force, as well as the direction and amount of buckling, without significant heat generation on micro- or nanostructures. With this architecture, we demonstrated fundamental aspects of device function and dynamics. By applying voltages at any of the digital electronics standards, we have controlled the direction of buckling. Lateral deflections as large as 12% of the beam length were achieved. By modulating the compressive stress and lateral electrostatic force acting on the beam, we tuned the potential energy barrier between the postbifurcation stable states and characterized snap-through transitions between these states. The proposed architecture opens avenues for further studies in actuators, shape-shifting devices, thermodynamics of information, and dynamical chaos.