Simple functors of admissible linear categories
dc.citation.epage | 472 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 463 | en_US |
dc.citation.volumeNumber | 19 | en_US |
dc.contributor.author | Barker, L. | en_US |
dc.contributor.author | Demirel, M. | en_US |
dc.date.accessioned | 2018-04-12T10:57:32Z | |
dc.date.available | 2018-04-12T10:57:32Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Mathematics | en_US |
dc.department | Department of Economics | en_US |
dc.description.abstract | Generalizing an idea used by Bouc, Thévenaz, Webb and others, we introduce the notion of an admissible R-linear category for a commutative unital ring R. Given an R-linear category (Formula presented.) , we define an (Formula presented.) -functor to be a functor from (Formula presented.) to the category of R-modules. In the case where (Formula presented.) is admissible, we establish a bijective correspondence between the isomorphism classes of simple functors and the equivalence classes of pairs (G, V) where G is an object and V is a module of a certain quotient of the endomorphism algebra of G. Here, two pairs (F, U) and (G, V) are equivalent provided there exists an isomorphism F ← G effecting transport to U from V. We apply this to the category of finite abelian p-groups and to a class of subcategories of the biset category. © 2015, Springer Science+Business Media Dordrecht. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:57:32Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1007/s10468-015-9583-2 | en_US |
dc.identifier.eissn | 1572-9079 | |
dc.identifier.issn | 1386-923X | |
dc.identifier.uri | http://hdl.handle.net/11693/36926 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10468-015-9583-2 | en_US |
dc.source.title | Algebras and Representation Theory | en_US |
dc.subject | Biset category | en_US |
dc.subject | Group category | en_US |
dc.subject | Quiver algebra of a linear category | en_US |
dc.subject | Seeds of simple functors | en_US |
dc.subject | Equivalence classes | en_US |
dc.subject | Group theory | en_US |
dc.subject | Set theory | en_US |
dc.subject | Biset category | en_US |
dc.subject | Functors | en_US |
dc.subject | Group category | en_US |
dc.subject | Isomorphism class | en_US |
dc.subject | Linear categories | en_US |
dc.subject | p-Group | en_US |
dc.subject | Algebra | en_US |
dc.subject | Primary: 20C20 | en_US |
dc.subject | Secondary: 20J99 | en_US |
dc.title | Simple functors of admissible linear categories | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Simple Functors of Admissible Linear Categories.pdf
- Size:
- 237.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version