Simple functors of admissible linear categories
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Generalizing an idea used by Bouc, Thévenaz, Webb and others, we introduce the notion of an admissible R-linear category for a commutative unital ring R. Given an R-linear category (Formula presented.) , we define an (Formula presented.) -functor to be a functor from (Formula presented.) to the category of R-modules. In the case where (Formula presented.) is admissible, we establish a bijective correspondence between the isomorphism classes of simple functors and the equivalence classes of pairs (G, V) where G is an object and V is a module of a certain quotient of the endomorphism algebra of G. Here, two pairs (F, U) and (G, V) are equivalent provided there exists an isomorphism F ← G effecting transport to U from V. We apply this to the category of finite abelian p-groups and to a class of subcategories of the biset category. © 2015, Springer Science+Business Media Dordrecht.