Frequency-dependent piezoresistive effect in top-down fabricated gold nanoresistors

buir.contributor.authorHanay, Mehmet Selim
buir.contributor.orcidHanay, Mehmet Selim|0000-0002-1928-044X
dc.citation.epage6539en_US
dc.citation.issueNumber15en_US
dc.citation.spage6533en_US
dc.citation.volumeNumber21en_US
dc.contributor.authorArı, A. B.
dc.contributor.authorKarakan, M. Ç.
dc.contributor.authorYanık, C.
dc.contributor.authorKaya, İ. İ.
dc.contributor.authorHanay, Mehmet Selim
dc.contributor.authorSvitelskiy, O.
dc.contributor.authorGonzález, M.
dc.contributor.authorSeren, H.
dc.contributor.authorEkinci, K. L.
dc.date.accessioned2022-01-26T12:50:38Z
dc.date.available2022-01-26T12:50:38Z
dc.date.issued2021-08-11
dc.departmentDepartment of Mechanical Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractPiezoresistive strain gauges allow for electronic readout of mechanical deformations with high fidelity. As piezoresistive strain gauges are aggressively being scaled down for applications in nanotechnology, it has become critical to investigate their physical attributes at different limits. Here, we describe an experimental approach for studying the piezoresistive gauge factor of a gold thin-film nanoresistor as a function of frequency. The nanoresistor is fabricated lithographically near the anchor of a nanomechanical doubly clamped beam resonator. As the resonator is driven to resonance in one of its normal modes, the nanoresistor is exposed to frequency-dependent strains of ε ≲ 10–5 in the 4–36 MHz range. We calibrate the strain using optical interferometry and measure the resistance changes using a radio frequency mix-down technique. The piezoresistive gauge factor γ of our lithographic gold nanoresistors is γ ≈ 3.6 at 4 MHz, in agreement with comparable macroscopic thin metal film resistors in previous works. However, our γ values increase monotonically with frequency and reach γ ≈ 15 at 36 MHz. We discuss possible physics that may give rise to this unexpected frequency dependence.en_US
dc.description.provenanceSubmitted by Mustafa Er (mer@bilkent.edu.tr) on 2022-01-26T12:50:37Z No. of bitstreams: 1 Frequency-dependent_piezoresistive_effect_in_top-down_fabricated_gold_nanoresistors.pdf: 3760494 bytes, checksum: 916200ea88d165e4fd6fcaf15877f987 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-01-26T12:50:38Z (GMT). No. of bitstreams: 1 Frequency-dependent_piezoresistive_effect_in_top-down_fabricated_gold_nanoresistors.pdf: 3760494 bytes, checksum: 916200ea88d165e4fd6fcaf15877f987 (MD5) Previous issue date: 2021-08-11en
dc.identifier.doi10.1021/acs.nanolett.1c01733en_US
dc.identifier.eissn1530-6992
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/76807
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.nanolett.1c01733en_US
dc.source.titleNano Lettersen_US
dc.subjectPiezoresistive effecten_US
dc.subjectPiezoresistive gauge factoren_US
dc.subjectGold nanowireen_US
dc.subjectGold nanoresistoren_US
dc.subjectNEMSen_US
dc.titleFrequency-dependent piezoresistive effect in top-down fabricated gold nanoresistorsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Frequency-dependent_piezoresistive_effect_in_top-down_fabricated_gold_nanoresistors.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: