Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage24138en_US
dc.citation.issueNumber24en_US
dc.citation.spage24129en_US
dc.citation.volumeNumber19en_US
dc.contributor.authorAkosman, A.E.en_US
dc.contributor.authorMutlu, M.en_US
dc.contributor.authorKurt H.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2016-02-08T09:50:08Z
dc.date.available2016-02-08T09:50:08Z
dc.date.issued2011en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe demonstrate the operation of a compact wavelength demultiplexer using cascaded single-mode photonic crystal waveguides utilizing the slow light regime. By altering the dielectric filling factors of each waveguide segment, we numerically and experimentally show that different frequencies are separated at different locations along the waveguide. In other words, the beams of different wavelengths are spatially dropped along the transverse to the propagation direction. We numerically verified the spatial shifts of certain wavelengths by using the two-dimensional finite-difference time-domain method. The presented design can be extended to de-multiplex more wavelengths by concatenating additional photonic crystal waveguides with different filling factors. © 2011 Optical Society of America.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:50:08Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1364/OE.19.024129en_US
dc.identifier.issn10944087
dc.identifier.urihttp://hdl.handle.net/11693/21713
dc.language.isoEnglishen_US
dc.publisherOptical Society of American (OSA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/OE.19.024129en_US
dc.source.titleOptics Expressen_US
dc.subjectFinite difference time domain methoden_US
dc.subjectLaser opticsen_US
dc.subjectMultiplexingen_US
dc.subjectOptical waveguidesen_US
dc.subjectSlow lighten_US
dc.subjectTime domain analysisen_US
dc.subjectWaveguidesen_US
dc.subjectDielectric fillingen_US
dc.subjectDifferent frequencyen_US
dc.subjectFilling factoren_US
dc.subjectLight regimeen_US
dc.subjectPhotonic crystal waveguideen_US
dc.subjectPropagation directionen_US
dc.subjectSingle-mode photonic crystalen_US
dc.subjectWaveguide segmentsen_US
dc.subjectWavelength demultiplexersen_US
dc.subjectPhotonic crystalsen_US
dc.subjectarticleen_US
dc.subjectcomputer aided designen_US
dc.subjectcomputer simulationen_US
dc.subjectcrystallizationen_US
dc.subjectequipmenten_US
dc.subjectequipment designen_US
dc.subjectinstrumentationen_US
dc.subjectphotonen_US
dc.subjectrefractometryen_US
dc.subjectsurface plasmon resonanceen_US
dc.subjecttheoretical modelen_US
dc.subjectComputer Simulationen_US
dc.subjectComputer-Aided Designen_US
dc.subjectCrystallizationen_US
dc.subjectEquipment Designen_US
dc.subjectEquipment Failure Analysisen_US
dc.subjectModels, Theoreticalen_US
dc.subjectPhotonsen_US
dc.subjectRefractometryen_US
dc.subjectSurface Plasmon Resonanceen_US
dc.titleCompact wavelength de-multiplexer design using slow light regime of photonic crystal waveguidesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Full printable version