Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We demonstrate the operation of a compact wavelength demultiplexer using cascaded single-mode photonic crystal waveguides utilizing the slow light regime. By altering the dielectric filling factors of each waveguide segment, we numerically and experimentally show that different frequencies are separated at different locations along the waveguide. In other words, the beams of different wavelengths are spatially dropped along the transverse to the propagation direction. We numerically verified the spatial shifts of certain wavelengths by using the two-dimensional finite-difference time-domain method. The presented design can be extended to de-multiplex more wavelengths by concatenating additional photonic crystal waveguides with different filling factors. © 2011 Optical Society of America.