Lab-on-a-chip platforms for disease detection and diagnosis

Date

2018

Authors

Işıksaçan, Ziya.
Güler, M. T.
Kalantarifard, Ali
Asghari, Mohammad
Elbüken, Çağlar

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Wiley Blackwell

Volume

Issue

Pages

155 - 181

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The adaptation of silicon electronics microfabrication technologies to other materials led to the birth of microfluidic systems. These systems allow investigation and control of fluids at micrometer scale. Due to the wide variety of applications of microfluidics, several research groups have been involved in the development of basic microfluidic components. After the development of fundamental fluid handling components, these technologies have been integrated for numerous applications one of which is disease detection and diagnostics. This chapter summarizes the microfluidic platforms that are mature enough for adaptation towards disease detection. The microfluidic platforms were discussed under six categories: continuous flow, paper‐based, microdroplets, digital microfluidics, compact disk‐based, and wearable platforms. Seminal works and recent developments in each category have been presented together with successful commercial examples. It is worth noting that some studies straddle more than one category, therefore, this classification is strictly for the ease of the reader. Each section discusses the benefits of a specific microfluidic platform. Engineering of microfluidic systems lead to lab‐on‐a‐chip (LOC) systems that can be used for diagnostics whether at point‐of‐care as portable systems or at clinical settings as advanced detection systems. The increasing awareness on personalized treatments proves the importance of such democratizing technologies. The increasing market share of microfluidic platforms in nearly all sectors is also an indication of the bright future of microfluidics and lab‐on‐a‐chip systems. The chapter is ended with a future outlook.

Course

Other identifiers

Book Title

Biosensors and Nanotechnology: applications in health care diagnostics

Citation