In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

dc.citation.issueNumber5en_US
dc.citation.volumeNumber5en_US
dc.contributor.authorBayram, C.en_US
dc.contributor.authorMizrak, A.K.en_US
dc.contributor.authorAktürk, S.en_US
dc.contributor.authorKurşaklioǧlu H.en_US
dc.contributor.authorIyisoy, A.en_US
dc.contributor.authorIfran, A.en_US
dc.contributor.authorDenkbaş, E.B.en_US
dc.date.accessioned2016-02-08T10:00:29Z
dc.date.available2016-02-08T10:00:29Z
dc.date.issued2010en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstract316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. © 2010 IOP Publishing Ltd.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:00:29Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1088/1748-6041/5/5/055007en_US
dc.identifier.issn17486041
dc.identifier.urihttp://hdl.handle.net/11693/22464
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1748-6041/5/5/055007en_US
dc.source.titleBiomedical Materialsen_US
dc.subjectAngle measurementen_US
dc.subjectBinding energyen_US
dc.subjectBiocompatibilityen_US
dc.subjectCarboxylic acidsen_US
dc.subjectContact angleen_US
dc.subjectCorrosion resistant alloysen_US
dc.subjectGlow dischargesen_US
dc.subjectOrganic acidsen_US
dc.subjectPlasma polymerizationen_US
dc.subjectPolyethylene glycolsen_US
dc.subjectPolyethylene oxidesen_US
dc.subjectPolyethylenesen_US
dc.subjectPolymersen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subject2-hydroxyethyl methacrylateen_US
dc.subject316 L stainless steelen_US
dc.subjectAcrylic acidsen_US
dc.subjectAnti-proliferativeen_US
dc.subjectControl groupsen_US
dc.subjectCoronary stentsen_US
dc.subjectCovalent couplingsen_US
dc.subjectCytotoxicen_US
dc.subjectEthylene diamineen_US
dc.subjectGood correlationsen_US
dc.subjectHaemocompatibilityen_US
dc.subjectHexamethyl disiloxaneen_US
dc.subjectHexamethyldisilanesen_US
dc.subjectIn-vitroen_US
dc.subjectIntra-coronary stentsen_US
dc.subjectMitomycin Cen_US
dc.subjectPolymeric compoundsen_US
dc.subjectPolymerization systemsen_US
dc.subjectRadio frequency glow dischargeen_US
dc.subjectSurface-modifieden_US
dc.subjectWater contact angle measurementen_US
dc.subjectStainless steelen_US
dc.subject2 hydroxyethyl methacrylateen_US
dc.subjectacrylic aciden_US
dc.subjectethylenediamineen_US
dc.subjecthexamethyldisilaneen_US
dc.subjecthexamethyldisiloxaneen_US
dc.subjectmacrogolen_US
dc.subjectmitomycin Cen_US
dc.subjectsilane derivativeen_US
dc.subjectstainless steelen_US
dc.subjectunclassified drugen_US
dc.subject2 hydroxyethyl methacrylateen_US
dc.subjectantineoplastic antibioticen_US
dc.subjectbiomaterialen_US
dc.subjectmacrogol derivativeen_US
dc.subjectmethacrylic acid derivativeen_US
dc.subjectmitomycinen_US
dc.subjectpolymeren_US
dc.subjectanimal cellen_US
dc.subjectarticleen_US
dc.subjectbiocompatibilityen_US
dc.subjectcontact angleen_US
dc.subjectcontrolled studyen_US
dc.subjectcoronary stenten_US
dc.subjectcytotoxicityen_US
dc.subjecthumanen_US
dc.subjectmouseen_US
dc.subjectnonhumanen_US
dc.subjectphysical chemistryen_US
dc.subjectplasmaen_US
dc.subjectpolymerizationen_US
dc.subjectsurface propertyen_US
dc.subjectwettabilityen_US
dc.subjectblooden_US
dc.subjectblood clotting testen_US
dc.subjectbody fluiden_US
dc.subjectchemistryen_US
dc.subjectcomparative studyen_US
dc.subjectstenten_US
dc.subjecttoxicity testingen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectAntibiotics, Antineoplasticen_US
dc.subjectBlooden_US
dc.subjectBlood Coagulation Testsen_US
dc.subjectBody Fluidsen_US
dc.subjectCoated Materials, Biocompatibleen_US
dc.subjectHumansen_US
dc.subjectMethacrylatesen_US
dc.subjectMitomycinen_US
dc.subjectPhotoelectron Spectroscopyen_US
dc.subjectPolyethylene Glycolsen_US
dc.subjectPolymersen_US
dc.subjectStainless Steelen_US
dc.subjectStentsen_US
dc.subjectSurface Propertiesen_US
dc.subjectToxicity Testsen_US
dc.subjectWettabilityen_US
dc.titleIn vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stentsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.pdf
Size:
948.5 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version