Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure

buir.contributor.authorOkyay, Ali Kemal
dc.citation.epage1755en_US
dc.citation.issueNumber8en_US
dc.citation.spage1751en_US
dc.citation.volumeNumber212en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorRizk, A.en_US
dc.contributor.authorTekcan, B.en_US
dc.contributor.authorAlkis, S.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorNayfeh, A.en_US
dc.date.accessioned2016-02-08T09:45:13Z
dc.date.available2016-02-08T09:45:13Z
dc.date.issued2015en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractA memory structure containing ultra-small 2-nm laser-synthesized silicon nanoparticles is demonstrated. The Si-nanoparticles are embedded between an atomic layer deposited high-κ dielectric Al<inf>2</inf>O<inf>3</inf> layer and a sputtered SiO<inf>2</inf> layer. A memory effect due to charging of the Si nanoparticles is observed using high frequency C-V measurements. The shift of the threshold voltage obtained from the hysteresis measurements is around 3.3V at 10/-10V gate voltage sweeping. The analysis of the energy band diagram of the memory structure and the negative shift of the programmed C-V curve indicate that holes are tunneling from p-type Si via Fowler-Nordheim tunneling and are being trapped in the Si nanoparticles. In addition, the structures show good endurance characteristic (>105program/erase cycles) and long retention time (>10 years), which make them promising for applications in non-volatile memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.identifier.doi10.1002/pssa.201431802en_US
dc.identifier.issn1862-6300
dc.identifier.urihttp://hdl.handle.net/11693/21358
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/pssa.201431802en_US
dc.source.titlePhysica Status Solidi (A) Applications and Materials Scienceen_US
dc.subjectAluminumen_US
dc.subjectApplication programsen_US
dc.subjectAtomic layer depositionen_US
dc.subjectC (programming language)en_US
dc.subjectCharge trappingen_US
dc.subjectData storage equipmenten_US
dc.subjectDigital storageen_US
dc.subjectFlash memoryen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMOS devicesen_US
dc.subjectNanoparticlesen_US
dc.subjectSemiconducting siliconen_US
dc.subjectSemiconductor lasersen_US
dc.subjectSiliconen_US
dc.subjectSilicon oxidesen_US
dc.subjectSynthesis (chemical)en_US
dc.subjectThreshold voltageen_US
dc.subjectAtomic layer depositeden_US
dc.subjectCharge trapping memoryen_US
dc.subjectHysteresis measurementsen_US
dc.subjectLaser processen_US
dc.subjectMetal Oxide Semiconductor structureen_US
dc.subjectNonvolatile memory devicesen_US
dc.subjectSilicon nanoparticlesen_US
dc.subjectSynthesized solutionen_US
dc.subjectCrystal atomic structureen_US
dc.titleMemory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structureen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Memory effect by charging of ultra-small 2-nm laser-synthesized solution processable Si-nanoparticles embedded in Si-Alinf2infOinf3inf-SiOinf2inf structure.pdf
Size:
467.21 KB
Format:
Adobe Portable Document Format
Description:
Full printable version