Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure
buir.contributor.author | Okyay, Ali Kemal | |
dc.citation.epage | 1755 | en_US |
dc.citation.issueNumber | 8 | en_US |
dc.citation.spage | 1751 | en_US |
dc.citation.volumeNumber | 212 | en_US |
dc.contributor.author | El-Atab, N. | en_US |
dc.contributor.author | Rizk, A. | en_US |
dc.contributor.author | Tekcan, B. | en_US |
dc.contributor.author | Alkis, S. | en_US |
dc.contributor.author | Okyay, Ali Kemal | en_US |
dc.contributor.author | Nayfeh, A. | en_US |
dc.date.accessioned | 2016-02-08T09:45:13Z | |
dc.date.available | 2016-02-08T09:45:13Z | |
dc.date.issued | 2015 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | A memory structure containing ultra-small 2-nm laser-synthesized silicon nanoparticles is demonstrated. The Si-nanoparticles are embedded between an atomic layer deposited high-κ dielectric Al<inf>2</inf>O<inf>3</inf> layer and a sputtered SiO<inf>2</inf> layer. A memory effect due to charging of the Si nanoparticles is observed using high frequency C-V measurements. The shift of the threshold voltage obtained from the hysteresis measurements is around 3.3V at 10/-10V gate voltage sweeping. The analysis of the energy band diagram of the memory structure and the negative shift of the programmed C-V curve indicate that holes are tunneling from p-type Si via Fowler-Nordheim tunneling and are being trapped in the Si nanoparticles. In addition, the structures show good endurance characteristic (>105program/erase cycles) and long retention time (>10 years), which make them promising for applications in non-volatile memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:45:13Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015 | en |
dc.identifier.doi | 10.1002/pssa.201431802 | en_US |
dc.identifier.issn | 1862-6300 | |
dc.identifier.uri | http://hdl.handle.net/11693/21358 | |
dc.language.iso | English | en_US |
dc.publisher | Wiley-VCH Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1002/pssa.201431802 | en_US |
dc.source.title | Physica Status Solidi (A) Applications and Materials Science | en_US |
dc.subject | Aluminum | en_US |
dc.subject | Application programs | en_US |
dc.subject | Atomic layer deposition | en_US |
dc.subject | C (programming language) | en_US |
dc.subject | Charge trapping | en_US |
dc.subject | Data storage equipment | en_US |
dc.subject | Digital storage | en_US |
dc.subject | Flash memory | en_US |
dc.subject | Metal nanoparticles | en_US |
dc.subject | MOS devices | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Semiconducting silicon | en_US |
dc.subject | Semiconductor lasers | en_US |
dc.subject | Silicon | en_US |
dc.subject | Silicon oxides | en_US |
dc.subject | Synthesis (chemical) | en_US |
dc.subject | Threshold voltage | en_US |
dc.subject | Atomic layer deposited | en_US |
dc.subject | Charge trapping memory | en_US |
dc.subject | Hysteresis measurements | en_US |
dc.subject | Laser process | en_US |
dc.subject | Metal Oxide Semiconductor structure | en_US |
dc.subject | Nonvolatile memory devices | en_US |
dc.subject | Silicon nanoparticles | en_US |
dc.subject | Synthesized solution | en_US |
dc.subject | Crystal atomic structure | en_US |
dc.title | Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Memory effect by charging of ultra-small 2-nm laser-synthesized solution processable Si-nanoparticles embedded in Si-Alinf2infOinf3inf-SiOinf2inf structure.pdf
- Size:
- 467.21 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version