One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes
buir.contributor.author | Güler, Mustafa O. | |
dc.citation.epage | 17427 | en_US |
dc.citation.issueNumber | 27 | en_US |
dc.citation.spage | 17421 | en_US |
dc.citation.volumeNumber | 8 | en_US |
dc.contributor.author | Susapto, H. H. | en_US |
dc.contributor.author | Kudu, O. U. | en_US |
dc.contributor.author | Garifullin, R. | en_US |
dc.contributor.author | Yllmaz, E. | en_US |
dc.contributor.author | Güler, Mustafa O. | en_US |
dc.date.accessioned | 2018-04-12T10:51:06Z | |
dc.date.available | 2018-04-12T10:51:06Z | |
dc.date.issued | 2016-06 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | Template-directed synthesis of nanomaterials can provide benefits such as small crystalline size, high surface area, large surface-to-volume ratio, and structural stability. These properties are important for shorter distance in ion/electron movement and better electrode surface/electrolyte contact for energy storage applications. Here nanostructured FePO4 cathode materials were synthesized by using peptide nanostructures as a template inspired by biomineralization process. The amorphous, high surface area FePO4 nanostructures were utilized as a cathode for lithium-ion batteries. Discharge capacity of 155 mAh/g was achieved at C/20 current rate. The superior properties of biotemplated and nanostructured amorphous FePO4 are shown compared to template-free crystalline FePO4. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:51:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1021/acsami.6b02528 | en_US |
dc.identifier.issn | 1944-8244 | |
dc.identifier.uri | http://hdl.handle.net/11693/36728 | |
dc.language.iso | English | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.isversionof | https://doi.org/10.1021/acsami.6b02528 | en_US |
dc.source.title | ACS Applied Materials and Interfaces | en_US |
dc.subject | Hydrogel | en_US |
dc.subject | Nanobelt | en_US |
dc.subject | Nanofiber | en_US |
dc.subject | Peptide amphiphile | en_US |
dc.subject | Self-assembly | en_US |
dc.subject | Template-directed materials | en_US |
dc.subject | Biomineralization | en_US |
dc.subject | Cathodes | en_US |
dc.subject | Crystalline materials | en_US |
dc.subject | Electric batteries | en_US |
dc.subject | Electrodes | en_US |
dc.subject | Hydrogels | en_US |
dc.subject | Ions | en_US |
dc.subject | Lithium alloys | en_US |
dc.subject | Lithium compounds | en_US |
dc.subject | Nanobelts | en_US |
dc.subject | Nanofibers | en_US |
dc.subject | Nanostructures | en_US |
dc.subject | Peptides | en_US |
dc.subject | Self assembly | en_US |
dc.subject | Stability | en_US |
dc.subject | Biomineralization process | en_US |
dc.subject | Discharge capacities | en_US |
dc.subject | Electrode surfaces | en_US |
dc.subject | Energy storage applications | en_US |
dc.subject | Lithium-ion battery cathodes | en_US |
dc.subject | Peptide amphiphiles | en_US |
dc.subject | Structural stabilities | en_US |
dc.subject | Template-directed synthesis | en_US |
dc.subject | Lithium-ion batteries | en_US |
dc.title | One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- One-Dimensional Peptide Nanostructure Templated Growth of Iron Phosphate Nanostructures for Lithium-Ion Battery Cathodes.pdf
- Size:
- 7.96 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version