One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes

buir.contributor.authorGüler, Mustafa O.
dc.citation.epage17427en_US
dc.citation.issueNumber27en_US
dc.citation.spage17421en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorSusapto, H. H.en_US
dc.contributor.authorKudu, O. U.en_US
dc.contributor.authorGarifullin, R.en_US
dc.contributor.authorYllmaz, E.en_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.date.accessioned2018-04-12T10:51:06Z
dc.date.available2018-04-12T10:51:06Z
dc.date.issued2016-06en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractTemplate-directed synthesis of nanomaterials can provide benefits such as small crystalline size, high surface area, large surface-to-volume ratio, and structural stability. These properties are important for shorter distance in ion/electron movement and better electrode surface/electrolyte contact for energy storage applications. Here nanostructured FePO4 cathode materials were synthesized by using peptide nanostructures as a template inspired by biomineralization process. The amorphous, high surface area FePO4 nanostructures were utilized as a cathode for lithium-ion batteries. Discharge capacity of 155 mAh/g was achieved at C/20 current rate. The superior properties of biotemplated and nanostructured amorphous FePO4 are shown compared to template-free crystalline FePO4.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:51:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1021/acsami.6b02528en_US
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/11693/36728
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acsami.6b02528en_US
dc.source.titleACS Applied Materials and Interfacesen_US
dc.subjectHydrogelen_US
dc.subjectNanobelten_US
dc.subjectNanofiberen_US
dc.subjectPeptide amphiphileen_US
dc.subjectSelf-assemblyen_US
dc.subjectTemplate-directed materialsen_US
dc.subjectBiomineralizationen_US
dc.subjectCathodesen_US
dc.subjectCrystalline materialsen_US
dc.subjectElectric batteriesen_US
dc.subjectElectrodesen_US
dc.subjectHydrogelsen_US
dc.subjectIonsen_US
dc.subjectLithium alloysen_US
dc.subjectLithium compoundsen_US
dc.subjectNanobeltsen_US
dc.subjectNanofibersen_US
dc.subjectNanostructuresen_US
dc.subjectPeptidesen_US
dc.subjectSelf assemblyen_US
dc.subjectStabilityen_US
dc.subjectBiomineralization processen_US
dc.subjectDischarge capacitiesen_US
dc.subjectElectrode surfacesen_US
dc.subjectEnergy storage applicationsen_US
dc.subjectLithium-ion battery cathodesen_US
dc.subjectPeptide amphiphilesen_US
dc.subjectStructural stabilitiesen_US
dc.subjectTemplate-directed synthesisen_US
dc.subjectLithium-ion batteriesen_US
dc.titleOne-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
One-Dimensional Peptide Nanostructure Templated Growth of Iron Phosphate Nanostructures for Lithium-Ion Battery Cathodes.pdf
Size:
7.96 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version