Microwave resonators enhanced with 3D liquid-metal electrodes for microparticle sensing in microfluidic applications

Date

2023-11-22

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Journal of Microwaves

Print ISSN

Electronic ISSN

2692-8388

Publisher

Institute of Electrical and Electronics Engineers

Volume

4

Issue

1

Pages

139 - 146

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
31
views
16
downloads

Series

Abstract

In electrical sensing applications, achieving a uniform electric field at the sensing region is required to eliminate the compounding effect of particle location on the signal magnitude. To generate a uniform electric field in a microfluidic platform, 3D electrodes based on conductive electrolyte liquids have been developed before, where the ionic conductivity of the electrolyte was sufficient for impedance measurements at low frequencies (typically lower than 50 MHz). However, electrolyte liquids cannot be used as electrodes at microwave frequencies (>1 GHz) due to the low mobility of ions. Here, we used Galinstan, a room-temperature liquid metal, to microfabricate 3D liquid electrodes connected to a microwave resonator — and all integrated within a microfluidic system. By generating a highly uniform electric field, a mixture of 20 μm and 30 μm diameter polystyrene particles were measured and analyzed without any calibration for particle position. The results demonstrate the utility of liquid electrodes in enhancing the electrical characteristics of microwave resonant sensors.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)