Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity

dc.citation.epage275en_US
dc.citation.issueNumber2en_US
dc.citation.spage266en_US
dc.citation.volumeNumber6en_US
dc.contributor.authorSeker U.O.S.en_US
dc.contributor.authorChen, A. Y.en_US
dc.contributor.authorCitorik, R. J.en_US
dc.contributor.authorLu, T. K.en_US
dc.date.accessioned2018-04-12T11:08:17Z
dc.date.available2018-04-12T11:08:17Z
dc.date.issued2017en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractAmyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin subunit CsgA, and forms biological nanofibers with high aspect ratios. Here, we explore the application of curli fibers for nanotechnology by engineering curli to mediate tunable biological interfaces with inorganic materials and to controllably form gold nanoparticles and gold nanowires. Specifically, we used cell-synthesized curli fibers as templates for nucleating and growing gold nanoparticles and showed that nanoparticle size could be modulated as a function of curli fiber gold-binding affinity. Furthermore, we demonstrated that gold nanoparticles can be preseeded onto curli fibers and followed by gold enhancement to form nanowires. Using these two approaches, we created artificial cellular systems that integrate inorganic-organic materials to achieve tunable electrical conductivity. We envision that cell-synthesized amyloid nanofibers will be useful for interfacing abiotic and biotic systems to create living functional materials.en_US
dc.identifier.doi10.1021/acssynbio.6b00166en_US
dc.identifier.issn2161-5063
dc.identifier.urihttp://hdl.handle.net/11693/37274
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acssynbio.6b00166en_US
dc.source.titleACS Synthetic Biologyen_US
dc.subjectBiofilm proteinsen_US
dc.subjectFunctional amyloidsen_US
dc.subjectLiving materialsen_US
dc.subjectNanomaterial assemblyen_US
dc.subjectAmyloiden_US
dc.subjectBacterial proteinen_US
dc.subjectGold nanoparticleen_US
dc.subjectGold nanowireen_US
dc.subjectInorganic compounden_US
dc.subjectNanomaterialen_US
dc.subjectNanowireen_US
dc.subjectOrganic compounden_US
dc.subjectUnclassified drugen_US
dc.subjectAmyloiden_US
dc.subjectBacterial proteinen_US
dc.subjectCrl protein, Bacteriaen_US
dc.subjectEscherichia coli proteinen_US
dc.subjectGolden_US
dc.subjectMetal nanoparticleen_US
dc.subjectNanofiberen_US
dc.subjectNanomaterialen_US
dc.subjectArticleen_US
dc.subjectBinding affinityen_US
dc.subjectBiogenesisen_US
dc.subjectChemical engineeringen_US
dc.subjectElectric conductivityen_US
dc.subjectEscherichia colien_US
dc.subjectMetal bindingen_US
dc.subjectNanotechnologyen_US
dc.subjectNonhumanen_US
dc.subjectParticle sizeen_US
dc.subjectPriority journalen_US
dc.subjectProtein assemblyen_US
dc.subjectProtein secondary structureen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectBiofilmen_US
dc.subjectElectric conductivityen_US
dc.subjectGrowth, development and agingen_US
dc.subjectMetabolismen_US
dc.subjectMicrobiologyen_US
dc.subjectProceduresen_US
dc.subjectAmyloiden_US
dc.subjectBacterial Proteinsen_US
dc.subjectBiofilmsen_US
dc.subjectElectric Conductivityen_US
dc.subjectEscherichia colien_US
dc.subjectEscherichia coli Proteinsen_US
dc.subjectGolden_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectNanofibersen_US
dc.subjectNanostructuresen_US
dc.subjectNanotechnologyen_US
dc.subjectNanowiresen_US
dc.subjectParticle Sizeen_US
dc.titleSynthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivityen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic–Organic Interfaces and Electrical Conductivity.pdf
Size:
5.38 MB
Format:
Adobe Portable Document Format
Description:
Full printable version