Energy relaxation probed by weak antilocalization measurements in GaN heterostructures
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Energy relaxation and electron-phonon (e-p) interaction are investigated in wurtzite Al0.15Ga0.85 N/AlN/GaN and Al0.83 In0.17 N/AlN/GaN heterostructures with polarization induced two-dimensional electron gases in the Bloch-Grüneisen regime. Weak antilocalization (WAL) and Shubnikov-de Haas measurements were performed on gated Hall bar structures at temperatures down to 0.3 K. We used WAL as a thermometer to measure the electron temperature Te as a function of the dc bias current. We found that the power dissipated per electron, P e, was proportional to Te4 due to piezoelectric acoustic phonon emission by hot electrons. We calculated Pe as a function of Te without any adjustable parameters for both the static and the dynamic screening cases of piezoelectric e-p coupling. In the temperature range of this experiment, the static screening case was expected to be applicable; however, our data was in better agreement with the dynamic screening case. © 2009 American Institute of Physics.