Vapor sensing of colorectal cancer biomarkers in isolation by bare and functionalized nanoelectromechanical sensors

Date

2023-08-04

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Sensors Journal

Print ISSN

1530-437X

Electronic ISSN

1558-1748

Publisher

Institute of Electrical and Electronics Engineers

Volume

23

Issue

18

Pages

21113 - 21120

Language

en

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
8
views
14
downloads

Series

Abstract

Small dimensions and high resonance frequencies render nanoelectromechanical systems (NEMS) sensitive mass detectors. Mass detection capability can be used to sense chemicals in the gas phase by functionalizing the device, usually with a polymeric film. The performance of NEMS-based gas detectors in breath analysis applications depends crucially on the selectivity between selected functionalization layers and targeted biomarkers. Here, we report the detection of four colorectal cancer biomarkers at parts-per-million concentration levels, when introduced in isolation to the sensor system within a dry nitrogen stream. The biomarkers, 3-methylpentane, cyclohexane, nonanal, and decanal, were then discriminated from each other by using the combined response of three NEMS devices: one bare device, and two devices coated with either poly(ethyleneoxide) or poly(caprolactone). Our results indicate that bare NEMS are more responsive to high molar mass biomarkers, whereas functionalized sensors are more responsive toward more volatile biomarkers. Considering the inherently fast response times and minuscule limits of detection of NEMS devices, the combined response of differentially coated sensors can be used as the main sensing element to identify and distinguish cancer biomarkers in human breath.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)