Bayesian in-service failure rate models

Date

2022-08

Editor(s)

Advisor

Dayanık, Savaş

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
13
views
29
downloads

Series

Abstract

Predicting the number of appliance failures during service after sales is crucial for manufacturers to detect production errors and plan spare part inventories. We provide a two-phased Bayesian model that predicts the number of refrigerators that fail after sales. Thus the study focuses on both sales forecasting and failure detection. The two-phased Bayesian model is trained by the datasets provided by a leading durable home appliances company. The accuracy results show that one-level models are inferior to multi-level models when the data are sparse. We conclude that hierarchical Bayesian models are preferable since they can naturally capture the heterogeneity across all blends of attributes.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type