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ABSTRACT

BAYESIAN IN-SERVICE FAILURE RATE MODELS

Tolunay Alankaya

M.S. in Industrial Engineering

Advisor: Savaş Dayanık

August 2022

Predicting the number of appliance failures during service after sales is crucial for

manufacturers to detect production errors and plan spare part inventories. We

provide a two-phased Bayesian model that predicts the number of refrigerators

that fail after sales. Thus the study focuses on both sales forecasting and failure

detection. The two-phased Bayesian model is trained by the datasets provided

by a leading durable home appliances company. The accuracy results show that

one-level models are inferior to multi-level models when the data are sparse. We

conclude that hierarchical Bayesian models are preferable since they can naturally

capture the heterogeneity across all blends of attributes.

Keywords: Hierarchical Bayesian models, Hamiltonian Monte Carlo, sales fore-

casting, in-service failures.
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ÖZET

BAYEZYEN SERVİS İÇİ ARIZA ORANI MODELLERİ

Tolunay Alankaya

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Savaş Dayanık

Ağustos 2022

Satış sonrası arızalanan cihazların sayısını tahmin etmek, üreticilerin üretim hata-

larını tespit etmeleri ve yedek parça stoklarını planlamaları için çok önemlidir.

Satıştan sonra arızalanan buzdolaplarının sayısını tahmin eden iki aşamalı bir

Bayes modeli sunuyoruz. Bu nedenle çalışma hem satış tahmini hem de

arızalı ürün sayısı tahmini üzerine odaklanmaktadır. İki aşamalı Bayes mod-

eli, lider bir dayanıklı ev aletleri şirketi tarafından sağlanan veriler tarafından

eğitilmiştir. Sonuçlar, veriler seyrek olduğunda tek seviyeli modellerin çok seviyeli

modellerden daha düşük performans sergilediğini göstermektedir. Hiyerarşik

Bayes modellerinin verideki heterojenliği yakalayabildikleri için tercih edilebilir

olduğu sonucuna varıyoruz.

Anahtar sözcükler : Hiyerarşik Bayes modelleri, Hamiltoncu Monte Carlo, satış

tahmini, satış sonrası arızalar.
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Chapter 1

Introduction

In the past decade, the popularity of Bayesian models and sampling methods

flourished. Many researchers emphasize the strength and advantages of the hi-

erarchical structures that can be straightforwardly fitted using sampling meth-

ods [1]. The urgency of hierarchical models becomes more evident when the prac-

titioners work with sparse and hierarchical data [2]. The ability of hierarchical

structures to maintain stable results on sparse data makes them more appealing

for any type of prediction problem, especially for sales forecasting. For large-scale

sales forecasts of household appliances, data heterogeneity and sparsity can be

a substantial concern. Similarly, this study encounters these problems and uses

Bayesian modeling as a remedy.

In this thesis, we introduced a statistical model that predicts the number of

failed refrigerators in service. The study uses the data sets provided by a leading

home appliance producer. Two datasets include information on the number of

sold (installed) refrigerators and the number of failed refrigerators in service. The

model consists of two parts that serve for sales forecasting and failure detection.

Both datasets challenge the prediction methods due to the heterogeneity and

sparsity of refrigerator models. To be able to obtain stable and precise predictions,

we focused on hierarchical Bayesian models. Throughout the thesis, the methods

related to Bayesian models are explained, and results from models fitted to data
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are discussed.

As a classical statistical workflow, we first introduced the exploratory analysis

of the data in Chapter 2. Graphical tools are used for understanding the effects

of covariates. This chapter serves as a guideline for our applications. In Chapter

3, the related literature to our study is presented. Those studies include sales

forecasting methods both in and outside the domestic appliance industry. Most of

those studies focus on sophisticated forecasting methods and compare them with

more traditional ones. Similar types of approaches are used for detecting defective

goods. Both types of studies utilize the time-series methods and enhance them

with more recent tools such as Bayesian sampling or artificial neural networks.

In Chapter 4, some properties and characteristics of discrete generalized linear

models are explained. This chapter is essential for gaining insight into appropriate

distributions for the type of data at hand. To make a clear picture of Bayesian

models, Chapter 5 explains the ideas behind them and introduces their recent

sampling and diagnostics methods. The structures and Bayesian diagnostics of

the competing models for the sales forecasting and in-service failure predictions

are presented in Chapters 6 and 7, respectively. Lastly, models are compared in

Chapter 8, and final comments are made in Chapter 9.
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Chapter 2

Problem Definition and Datasets

This thesis aims to predict the number of in-service refrigerator failures using two

datasets provided by a leading durable home appliances company. The company

has more than 2800 retail stores in Turkey; thus, the provided data are rich and

suitable for machine/statistical learning applications. Both of the datasets were

collected monthly by the company between January 2018 and December 2020.

Although results and inferences from these datasets may not fully represent the

post-pandemic time, the company can make more accurate predictions of future

periods by training the provided models with more recent data. For estimating

the number of in-service refrigerator failures, the number of sold (installed) refrig-

erators is needed. Although this information is presented in the given datasets,

it can be used only to estimate the past number of in-service refrigerator failures.

Thus it can only be served for validating the model’s estimation for the past but

not for predicting the future. So, the number of installed refrigerators should also

be predicted for future periods.

For this purpose, a two-phased statistical learning model is constructed. In the

first phase, a model is built to predict the number of installed refrigerators us-

ing the covariates included in the installation dataset. This dataset has 2,906,434

rows and 20 columns, where each row represents a unique refrigerator installation.

After grouping the refrigerators according to their attributes and preprocessing

3



the data, a new installation dataset with 30,642 rows and 7 columns is obtained.

The inventory information is combined with this dataset; then, each row has

information on the number of installed and uninstalled refrigerators with refrig-

erator covariates in each month for at most 36 months after production. In the

second phase, we aim to detect the number of in-service refrigerator failures using

the same structure in the first phase. The failure data set includes the number

of failed refrigerators in each of 36 months after installation and shares the same

covariates. In both installation and failure data, zero counts were missing. After

adding the information about non-defective refrigerators (zero counts), we ob-

tained data with 32,929 observations. Although the size of the failure data is

more extensive than the installation data, it is significantly less informative due

to the large variety of refrigerator types. The percentage of zeros is 66% for the

failure data, while it is just 11% for installation data. Covariates in the datasets

are summarized in Table 2.2. In addition to covariates, each data set includes a

response variable y and a size variable n. For installation data, y is the number

of installed refrigerators (yinstalled), and n is the number of refrigerators ready for

installation (nproduced). Similarly, the response variable in the failure data is the

number of in-service refrigerator failures (yfailed), and the size of the risk group

is the number of installed refrigerators (ninstalled). The first six rows of installa-

tion and in-service failure data are presented in Tables 2.3 and 2.4, respectively.

Descriptions of all variables used in the thesis are presented in Table 2.1.
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Table 2.1: Descriptions of variables used in the thesis

Variable Names Definitions

InstMon Installation month of a refrigerator

ProdMon Production month of a refrigerator

AgeInstall The time between production and installation of a

refrigerator

AgeFail The time between installation and breakdown of a

refrigerator

AgeFailBinary Whether the breakdown of a refrigerator occurs in

the first month after installing

RModel Refrigerator model

Cmodel Compressor model of a refrigerator

Model Combined refrigerator and compressor model

Installed Number of installed refrigerator

Produced Number of refrigerators ready for installation

Failed Number of failed refrigerators

ZeroInstalled Zero installation

ZeroFailed Zero failure
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Table 2.2: Description of covariates

Covariate Description Levels

ProdMon Production month of

the refrigerator

1,2,. . . ,12

InstMon Installation month of

the refrigerator

1,2,. . . ,12

RModel Encoding of the model

of the refrigerator

aa1, ab2, ba3, bb1, ba5,

bb19, cb1, cc1, cc3, fa2,

ıa1, ja2, bb18, da1, da2,

da4, ba15, ba7, ba8, bb10,

ab3, ba9, bb11, ea1, ea2,

eb5, eb6, ec1, eb4, ee1, a3,

cb2, ba14, ca2, ga1, fa1,

ıa2, ıa10, ba1, ab1, fa3,

gb1, ed3, ba12, cc2, bb20,

bb8, bb13, ba10, eb3, eb2,

ha1, cb4, ja1, ha3, ba2,

eb1, ba4, ed2, ad1, ba11,

db2, bb3, bb2, db1, bb22,

ba6, bb9, bb21, ıa6, bb14,

ıa11, bb15, ec3, bb16, ac2,

bb17, a8, db3, a7, fa4, ıa9,

bc, cb3, ba13, fb, ee2

CModel Encoding of the com-

pressor model of the re-

frigerator

1a, 1b, 2d, 3a, 3b, 4a, 4b,

4c, 5a, 6a, 6b, 8b, 2a, 2b,

8e, 1c, 8a, 6e, 3d, 3c, 2f,

6c, 7a, 8f, 1d, 8c, 3e, 2g,

6d

Age The time between pro-

duction and installation

in installation dataset/

The time between in-

stallation and break-

down in the failure

dataset

Continuous
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2.1 Exploring Datasets

In this section, we explore data to understand the covariates’ effects on the num-

ber of installations and in-service failures. The findings from this analysis are

used as a guideline for building statistical models.

2.1.1 Exploring Effects of Covariates in Installed Refrig-

erator Data

Figure 2.1 shows the installation numbers according to refrigerators’ installation

months. Each point represents the installation counts for each row in the data.

It can be seen that there is a seasonality in the data. The number of installed

refrigerators increases between January and August and then decreases. There

is a peak in August with some distinct values. The variation in counts for each

installation month is quite high. One of the sources of this variation can be

the refrigerator model since some models have low installation rates even in the

summer months.

Figure 2.1: Installation month versus number of installed refrigerators
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Figure 2.2 shows the installation numbers according to refrigerators’ produc-

tion months. There is also seasonality in the effect of production month, but its

effect is weaker than installation month. It can be seen that number of installed

refrigerators peaks before and beginning the summer. This observation might be

expected since the company may increase its production rate to prepare for the

excessive demands in the summer and then supply demand in the remainder of

the year from stocks.

Figure 2.2: Production month versus number of installed refrigerators

From Figure 2.3, one can deduce that there is an inverse proportionality be-

tween age and the number of installed refrigerators. It can also be observed that

the distribution is right skewed. The variation in installation numbers is quite

large for small values of age, but it decreases as the age gets larger. A potential

source of variations can be the refrigerator model, but Figure 2.8 indicates the

variation in installation numbers are pretty high within refrigerator models. An-

other explanation for this variation can be the installation numbers of substitute

appliances. Figure 2.3 indicates that the relation between installation numbers

and the age might not be linear, and the peak occurs at an age larger than zero.
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Figure 2.3: Age of the refrigerator versus number of installed refrigerators

Figures 2.4 and 2.5 shows the interaction effect of installation month and

refrigerator model. The installation year of refrigerators is represented with dif-

ferent colors in those figures. One can observe that some models are only installed

in 2018, meaning that new models substitute them. Also, some models have more

recent installation years, and others are installed each year. Figures 2.4 and 2.5

also indicate that the seasonality effect on installation month highly changes ac-

cording to refrigerator models. Models with low installation rates have a more

negligible seasonality effect. On the other hand, installation numbers of more

popular models dramatically increase during the summer season. A similar kind

of behavior can be observed in Figures 2.6 and 2.7. Again, the seasonality effect

of the production month is less significant for some models. Furthermore, these

plots show that installation numbers highly depend on the refrigerator models.

The popularities of refrigerators are pretty different, and the variance seems quite

high. Some models are hardly ever sold. They can be relatively old models with

less stock. Models with fewer installation numbers also have fewer observation
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points. After all the covariates are added to the model, data can be sparse, and

overfitting may occur. Thus rather than using the refrigerator model as a fixed

effect, a grouping factor in a hierarchical model might produce better results.

Figure 2.4: Interaction effect of installation month and refrigerator model
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Figure 2.5: Interaction effect of installation month and refrigerator model
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Figure 2.6: Interaction effect of production month and refrigerator model
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Figure 2.7: Interaction effect of production month and refrigerator model
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Figure 2.8: Interaction effect of age and refrigerator group

Figure 2.8 shows the interaction effect of age and the refrigerator group. Letters

on top of the panels represent the first letter of the refrigerator model. The figure

indicates that age interacts with the refrigerator model. For some models, such

as the ones that start with ”h,” ”ı,” and ”j,” the effect of age is insignificant. For

other models, the effect of age is visible, indicating that the hierarchical structure

makes sense.

Figure 2.9 shows the relation between the compressor model and the instal-

lation month. It can be seen that the refrigerator compressor model interacts

with the installation month. Similarly, Figure 2.10 shows the relation between

the compressor model and the production month. The figure indicates that the

compressor model also interacts with the production month. Thus, interaction

terms can be added to the model, or the compressor model can be combined with

the refrigerator model to create a unique model type for hierarchical structure.
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Figure 2.9: Interaction effect of installation month and compressor model
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Figure 2.10: Interaction effect of production month and compressor model
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2.1.2 Exploring Effects of Covariates on In-service refrig-

erator Failure Numbers

Figure 2.11: Installation month versus number of in-service refrigerator failures

Figure 2.12: Production month versus number of in-service refrigerator

failures
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To take into account the installation numbers, we normalized the failures by

installation numbers and used normalized failure rates in this section’s figures.

Figure 2.11 shows the relation between installation month and the number of

in-service refrigerator failures. Transparent points in the figure indicate that

the frequency of that point is low. One can deduce that the main effect of

the installation month is not significant. Figure 2.12 shows the main effect of

production month on in-service failure rates. Similar to the installation month,

the production month doesn’t have an impact on failure rates.

The age effect is presented in Figure 2.13. The figure indicates that the age

effect on failure rate is nonlinear. One can notice that the number of failed

refrigerators with age equal to one is distinctive. Thus, the age variable can turn

into a binary variable that answers whether the refrigerator failed during the first

month.

Figure 2.13: Age of the refrigerator versus number of in-service refrigerator fail-

ures
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Figure 2.14: Interaction effect of installation month and refrigerator model

Figure 2.15: Interaction effect of installation month and refrigerator model
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Figure 2.16: Interaction effect of production month and refrigerator model

Figure 2.17: Interaction effect of production month and refrigerator model
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Figure 2.18: Interaction effect age and refrigerator group

Figures 2.14 and 2.15 indicate that for some models, the effect of installation

month is more apparent. Unlike in Figure 2.11, failure rates are not fairly constant

in those figures. Nonetheless, for most models, the installation month effect

is weak. A hierarchical structure can be used for modeling this effect, or an

interaction effect can be added to the models. However, hierarchical structures

can provide a more robust solution since Figures 2.14, and 2.15 suggest that

some models have considerably low data points. A similar type of interpretation

of Figures 2.14 and 2.15 can also be made for Figures 2.16 and 2.17.

Figure 2.18 displays the interaction between age and refrigerator groups. One

may notice that for some models, the effect of age is close to zero. On the contrary,

the impact of the first month of the age is still apparent for some model groups.

This observation also supports the need for hierarchical structure since the effect

of age also depends on the refrigerator model.

22

(J) 

C: 
0 

~ 
<ii -(J) 

C: 

1,000 - • • 

750-

500 - •• 

a 

250 - : • I •• • 

o-Mifr · s a 

e 
g 1,000 - • 
0 
~ 750-

-0 

500 - • 

250 -t• o• No -~. o- d Sert a 

m 1,000 -

~ 750 -

~ 500-
250 -

0 - , I I I 

0 10 20 30 

b C d ... . . . -.. . . 
. . •· . .. . ... . .. . . ii . ~·· tr- Iii"' ,. st;f·, ~ -,, : 

g h .. . . 
• • • 
I 
I"'!. I .,, .. ·, 

I I I I I I I I 

0 10 20 30 0 10 20 30 

• .:..:.:.::..-
1 I I I 

0 10 20 30 
Age 



Chapter 3

Literature Review

Sales forecasting is a widely studied topic by many researchers. Most applications

are based on time-series analysis, conventional and recent methods, or count data

models. The increasing popularity of Bayesian sampling methods and artificial

neural networks reflects researchers’ choice of forecasting tools, and these methods

highly dominate this area. Recent studies usually use Bayesian sampling methods

to estimate the parameters of state-space models or adapt time-series problems to

artificial neural networks. The variety of techniques used to analyze the number

of defective products is wide. In addition to the methods that are popular in

sales forecasting, these area benefits from survival models.

Holt-Winters is a common prediction method in time-dependent problems.

This method estimates the level, trend, and seasonality parameters of the time se-

ries. The improved version of the Holt-Winters method, the damped Holt-Winters

model, fixes the unrealistic assumption that trends affect the whole horizon. A

hybrid method proposed by Kotsialos, Papageorgiou, and Poulimenos [3] couples

the Holt-Winters method with a feedforward multilayer neural network(FMNN).

Simply, this method can be defined as using smoothing equations in Holt-Winters

and producing the results with FMNN rather than an extrapolation equation.

Eight variations of this model are presented in the paper. Results indicate that

some FMNN-based models provide slightly better forecasting accuracies than the
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damped Holt-Winters model.

The sales forecasts for household appliances are examined by Carmen [4] from

a micro-economic point of view. The study uses cross-sectional data to include

the effect of consumers’ income, the price of substitute appliances, and the num-

ber of new family housing. The income elasticity of demand is considered for

improving the forecasting results. After calculating the income elasticity, the

author connects this information to the time series data and estimates the afore-

mentioned covariates and time series parameters using a constrained regression

model. The results are more promising than ordinary least square estimation.

In another forecasting study, Kolassa [5] focused on evaluation metrics of fore-

casting methods when the responses have a considerable portion of zeros. The

study utilizes count data models such as Poisson and negative binomial regression.

It also uses hybrid methods, including combining the count data models with the

Croston model, bootstrapping, and dynamic programming. The author indicates

some classical accuracy metrics, such as mean absolute deviation (MAD), mean

absolute scaled error (MASE), and mean absolute percentage error (MAPE), are

not suitable for assessing count data models. Additionally, the author emphasizes

that mean squared error (MSE) can be misleading if the practitioner prioritizes

increasing the accuracy of predicting zeros rather than large counts.

For forecasting the count valued time series data, Berry and West [6] pro-

posed a novel state space model by combining dynamic generalized linear models

with dynamic random effects. The study indicates that traditional time series

methods like exponential smoothing, ARIMA, and linear state-space models are

inappropriate when data includes too many zeros or low counts. The authors use

a dynamic count mixture by expressing zeros and positive integers separately and

enhance this model by adding a random effect to the state-space equation of the

mean. The study indicates that the proposed model can handle the overdisper-

sion problems in the data. Also, practitioners use the strength of the Bayesian

approach by defining their model in such a way.

The zero-inflated Poisson regression model was introduced by Lambert [7] in
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the context of detecting defects in manufacturing. The study argues zeros in

the data should be expressed by another distribution rather than the Poisson

distribution. The author proposed a discrete mixture model with covariates that

enable the capability of representing zeros more accurately. The study shows that

the Poisson distribution usually can not model the positive integers and zeros

together even if the covariates carry enough information about the response. The

author compares the zero-inflated model with the negative binomial model. The

conclusion was when the zero portion is large enough, the zero-inflated Poisson

model outperforms the overdispersed count models, such as the negative binomial

model.

As in sales forecasting, predicting the defective number of goods is also possible

using time-series methods. Reda, Challoob, and Omran [8] examined the defective

percentages in a laboratory. The authors compare standard time series methods

like exponential smoothing, moving average, and least square estimation. In

another study, Wang, Ni, and Wang [9] used more advanced techniques and

analyzed the defects in train wheels. The authors proposed a Bayesian state-

space model and also provided an outlier detection method based on the Bayes

factor.

The survival analysis methods are also used for examining defectiveness. These

types of hazard rate models are quite popular in the health and pharmacy indus-

try. Gao, Duan, and Rui [10] investigate the effect of social media on pharmacy

product recall using a discrete-time survival model. The study models hazard

rates using lagged covariates and compare the results of two different link func-

tions. In another study, Reefhuis [11] use the Bayesian approach to estimate the

log odds ratio of congenital disabilities according to mothers’ characteristics and

external factors such as smoking .
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Chapter 4

Modeling Count Data

In this chapter of the thesis, some properties and characterizations of the discrete

generalized linear models (GLMs) used in modeling count data are explained.

Generalized linear models (GLMs) are assumed to belong to a general family of

distributions called the exponential dispersion model family (EDMs) [12]. Dis-

crete distributions in the EDM family have the probability mass function of the

following form

P (y; θ, ϕ) = a (y, ϕ) exp

{
yθ − κ (θ)

ϕ

}
, (4.1)

where

• θ is the canonical parameter characterizes the mean function µ,

• ϕ >0 is the dispersion parameter that scales the variance function of y,

• κ (θ) is the cumulant function that defines the moments of the distribution,

• a (y;ϕ) is the normalizing function ensuring that
∑

y P (y; θ, ϕ) = 1.

The response variable y has a distribution with mean µ and dispersion param-

eter ϕ. Most of the time, the variance assumption on y does not hold and leads to

an overdispersion problem. As the name refers, overdispersion means that vari-

ance in the data is larger than the theoretical variance. To address overdispersion
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mixture models are proposed. Using maximum likelihood estimation (MLE) to

estimate the regression parameters can be challenging when mixture models do

not appear as known distribution in the EDM family. On the other hand, some

Bayesian sampling methods are quite flexible and can fit mixture models even if

the priors are not conjugate priors of the observation distribution.

4.1 Binomial Regression

In the context of the first part of the defined problem, the number of in-

stalled refrigerators represented as vinstalled has a binomial distribution with the

size nproduced; namely, the number of manufactured refrigerators, and installa-

tion probability µinstalled. Similarly, the second part of the problem modeled as

vdefective ∼ Bin (ninstalled, µdefective), where ninstalled is the number of installed re-

frigerators and µdefective is the probability that a refrigerator will fail in service.

Using a response variable y as a success ratio, explicitly y = v
n
, probability mass

functions in both problems have the following form

P (y;µ, n) =

(
n

ny

)
µny (1− µ)n(1−y) ,

=

(
n

ny

)
exp

y log
(

µ
1−µ

)
+ log (1− µ)

1/n

 .

(4.2)

Here canonical parameter suggests the logit function as the natural link func-

tion of binomial regression. Denoting the predictors as X and their regression

coefficients as β, the probability of an event being occurring is calculated using

log µ
1−µ

= Xβ.

The rth cumulant for an EDM equals

κr = ϕr−1d
rκ (θ)

dθr
. (4.3)

Equation 4.2 shows that ϕ = 1
n
, and κ (θ) = log (1− µ). Then, using equation

4.3 mean and variance of binomial regression can be defined as

E (y) = µ, V ar (y) =
µ (1− µ)

n
. (4.4)
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The theoretical variance of the response variable can be extremely small when

the n is large enough; then, it might not match the variance in the data. Mixture

models that allow overdispersion can be used as a solution. For scaling the

variance of the binomial distribution, the probability p of an event is defined as

a beta distributed random variable. By setting log µ
1−µ

= Xβ, the number of

successive trials v and success probability p have the following distributions.

v ∼ Bin (n, p) p ∼ Beta

(
µ

α
,
1− µ

α

)
(4.5)

The resultant mixture model is denoted as Beta-binomial distribution, and

it does not belong to the EDM family. So, Equation 4.3 can not be used for

calculating the variance of success ratio y = v
n
. But the variance of y can be

calculated using the variance of beta distribution and the law of the total variance

[13]

E (y) = µ, V ar (y) =
µ (1− µ)

n

(
1 +

n− 1

α + 1

)
. (4.6)

Equation 4.6 shows that the beta-binomial distribution has the same mean

as the binomial distribution but a scaled version of its variance. Inverse-

overdispersion parameter α characterizes the behavior of the distribution. When

it goes to infinity, the variance will be equal to the variance of the binomial dis-

tribution. So, the beta-binomial distribution behaves similarly to the binomial

distribution for the larger α values. Both regression parameters and α can be

calculated using Bayesian sampling methods.

lim
n→∞

BetaBin (n, µ, α) ∼ NB (µ, α) (4.7)

An interesting aspect of the beta-binomial distribution is shown in Equa-

tion 4.7. The indication is limiting behavior of the beta-binomial distribution is

analogous to the limiting behavior of the binomial distribution since the overdis-

persed version of the Poisson distribution is equivalent to the negative-binomial

distribution (NB).
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4.2 Poisson Regression

One of the Poisson distribution characterizations is obtained by taking the limit

of trial size in the Binomial distribution. The law of rare events states that the

number of successive trials approximately has Poisson distribution if the number

of trials is large enough [14]. This statement makes the Poisson regression model

suitable for the used dataset since the nproduced and ninstalled are quite large. By

denoting the response variable as count y, Poisson distribution has the probability

function

P (y;µ) =
exp (−µ)µy

y!
=

1

y!
exp (y log µ− µ) , (4.8)

where µ is the mean of the distribution. Here θ = log µ, κ (θ) = µ, and ϕ =

1. Canonical parameter suggests that the natural link function of the Poisson

distribution is the logarithm function, and regression terms can be added using

it (i.e.,log µ = Xβ + log (n)). Here n is an offset and the general notation of the

number of trials. Using the information on parameters and Equation 4.3 mean

and variance of the Poisson distribution calculated as

E (y) = V ar (y) = µ, (4.9)

which portrays an unrealistic assumption on mean and variance by considering

them equal. Consequently, overdispersion is so common in Poisson regression

models. A well-known mixture model is the Poisson-gamma mixture and achieved

by using a gamma random variable for the mean of the Poisson distribution.

Formally, let y ∼ Pois (θ), u ∼ gamma (α, α),and θ = µu, then the mixture

model has the probability function

P (y;µ, α) =

∫
fpoisson (y | θ) fgamma (θ | α, µ) dθ,

=

∫
e−θθy

y!

(
α
µ

)α

Γ (α)
θα−1e−

αθ
µ dθ,

=
Γ (α + y)

Γ (α) Γ (y + 1)

(
α

α + µ

)α (
µ

α + µ

)y

,

=
Γ (α + y)

Γ (α) Γ (y + 1)
exp

{
α log

(
α

α + µ

)
+ y log

(
µ

α + µ

)}
.

(4.10)
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The Poisson-gamma mixture is a characterization of the negative binomial

distribution. The negative binomial distribution is a member of the EDM family

with dispersion ϕ equals 1 if α is known, and the desired form is presented in the

last line of Equation 4.10. Using the properties of EDM, the mean and variance

of the negative binomial model calculated as

E (y) = µ, V ar (y) = µ+
µ2

α
. (4.11)

As in the beta-binomial model, α is the inverse-overdispersion parameter and

can be estimated with profile MLE or Bayesian sampling methods. Analogous to

the limiting behavior of the beta-binomial model, the negative binomial model

converges to the Poisson model as α goes to infinity.

4.3 Multi-Index Count Data Models

Like in the used dataset, generally, real-life datasets have excessive zeros than the

expectation of the mentioned count data models. Multi-index models are offered

to overcome this problem. Multi-index models have conditional mean functions,

and the overall mean is not the main interest. Rather mean effect decomposed

into an effect at the intensive margin and an effect at the extensive margin [15].

Hurdle models, also known as two-part models, specify different models for zero

counts and positive integer counts [14], and they also address the misspecification

caused by overdispersion [16]. The conditional probability function of familiar

distributions like the Poisson distribution or negative binomial distribution can

be used for modeling the positive integers. For modeling the remaining part, the

response variable is considered as a binary outcome that equals zero or not. Since

counts are conditioned on being larger than zero, this model uses a hurdle at zero.

Any non-negative integer can be used as a hurdle, and appropriate distributions

can be used for modeling two parts. The probability function of zero hurdle

Poisson regression has the form

P (y;µ, π) =

π, if y = 0,

(1− π) 1
1−exp(−µ)

exp(−µ)µy

y!
, if y > 0,

(4.12)
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for some 0 < π < 1, µ > 0. Here parameters π and µ can be calculated us-

ing regressors and appropriate link functions. Specifically, logit (π) = X
′
β

′
and

log (µ) = Xβ + log(n). In the zero hurdle models, the expected number of zeros

exactly matches the number of zeros in the data. Thus it can handle the scenar-

ios where data has too few zeros. This ability makes hurdle models more flexible

compared to the second type of multi-index model, namely, zero-inflated models.

Although hurdle models seem favorable over zero-inflated models, their perfor-

mance highly depends on the data. The hurdle model poorly performs when the

true data generating process is a zero-inflated distribution [17].

The idea in zero-inflated count models is adding extra zeros with some proba-

bility π. So, there are two types of sources for zeros in the zero-inflated models,

structural and sampling zeros [17]. In the context of the defined problem, re-

frigerators that are produced but not sent to retail stores are included in the

structural zero sources. On the other hand, refrigerators that are sent but not

sold are included in the sampling zero sources. By using a similar setting used

in the hurdle model, the probability function of the zero-inflated model can be

defined as

P (y;µ, π) =

π + (1− π) (1− exp{−µ}) , if y = 0,

(1− π) exp(−µ)µy

y!
, if y > 0.

(4.13)

For both models, the formulation of the probability function can be redefined

using negative-binomial distribution. Again, parameters in these models can be

calculated using MLE or Bayesian sampling methods.
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Chapter 5

Bayesian Models

The idea behind the Bayesian approach is to estimate the unknown model pa-

rameters θ = (θ1, θ2, . . . , θm) by updating the knowledge about them according to

observations y = (y1, y2, . . . , yn) and obtaining posterior densities p (θ | y). Using
the Bayes formula, posterior densities are calculated with

p (θ | y) = p (y | θ) p (θ)
p (y)

. (5.1)

Here p (y | θ) is the likelihood of y given model parameters θ. The frequentist

approach aims at maximizing the likelihood by changing the model parameters,

but the Bayesian approach focuses on finding the left-hand side of Equation 5.1.

The likelihood is multiplied with prior p (θ), which can be considered as including

the knowledge about model parameters or adding uncertainity to the model [18].

These interpretations of the prior depend on the choice of the prior distribution.

Some choices of distributions are considered informative priors and used when

practitioners want to dominate information that come from data with their ex-

pectations on parameters. In theory, priors can be non-informative and used for

adding uncertainty. On the other hand, the effect of the prior depends on the con-

text of the likelihood, and even non-informative priors can have substantial and

unpleasant effects. Thus, weakly informative priors became more popular since

they allow the data to inform while eliminating the unlikely values on parame-

ters [19]. Nevertheless, prior distributions or hyperparameters of the distributions
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need to be carefully selected using prior predictive checks and simulations.

In Equation 5.1, p (y) is the marginal density of y, which can be calculated by

integrating the numerator:

p (y) =

∫
p (y | θ) p (θ) dθ, (5.2)

where p (y) can be considered as a normalizing factor that ensures posterior den-

sity adds up to 1 [20]. Thus, without calculating the marginal density, posteriors

can be found using the fact that the posterior is proportional to the likelihood

times prior:

p (θ | y) ∝ p (y | θ) p (θ) . (5.3)

Due to its nature, the Bayesian approach allows complex models such as hier-

archical (also known as multilevel) models. A hierarchical model groups the data

by a factor and adjusts the model parameters accordingly. This type of parame-

ter estimation is called partial-pooling, which is an intermediate estimation type

between complete and no-pooling. No-pooling is equivalent to the fixed effect

model, which estimates the parameters using the sub-data obtained by dividing

data into the observations with the specific factor levels. No-pooling can lead

to over-fitting when the sample size of the sub-data is insufficient. On the other

hand, complete pooling uses the whole data when predicting the response, so it

is basically the sample mean of the response. Obviously, complete pooling is not

desirable since covariates are discarded. Partial-pooling takes advantage of both

complete-and no-pooling. The intuitive idea behind partial-pooling is shrinking

model parameters towards their means. The amount of pulling increases as the

sample size of the sub-data decreases. In the context of refrigerator data, let us

assume that the predictor is installation month, and the grouping factor is the

refrigerator model. Each level of installation month has a mean random effect

that can be calculated by discarding the refrigerator model. When the grouping

factor is included, a random effect of installation month can be different than

its mean. The difference will be less if the number of observations for a refrig-

erator model is small and vice versa. This model can be constructed by using

the installation month random effect as the parameter of the refrigerator-specific

installation month effect.

33



Formally, let α be the likelihood parameter, β be the group-specific effect,

and γ be the group-specific parameter (e.g., installation month effect). Then the

posterior density takes the form [21]

p (β, α, γ | y) = p (y | β, α) p (β | γ) p (γ) p (α)
p (y)

. (5.4)

In addition to likelihood and priors, Equation 5.4 has the conditional density of

group-specific effects. Here β and γ are vectors, and priors of γ can be written as

multiplication due to the independence assumption. The conditional density of β

is usually selected as multivariate distribution to express the correlation between

covariates. This makes multilevel models even more appealing.

5.1 Introduction to Bayesian Sampling

When the priors are selected as conjugate priors (i.e. prior and posterior distribu-

tions belong to the same distribution family), an analytical solution of posterior

distribution can be possible. Also, posteriors can be approximated using approx-

imation techniques such as Laplace approximation [20]. When the parameter

space is large, or the model is complex due to its hierarchical structure, calculat-

ing marginal densities with former approaches can be difficult or even impossible.

In that case, Markov Chain Monte Carlo (MCMC) sampling methods offer a

solution to obtain posterior densities [21].

MCMC explores the parameter space in a Markovian way by using transition

probabilities. In each iteration, value of a parameter changes or stays the same

according to its transition probability to the candidate value. Formally let θ(t) be

the sampled value at iteration t. Then transition probability can be defined as

K
(
θ(t) | θ(0), θ(1), . . . , θ(t−1)

)
= K

(
θ(t) | θ(t−1)

)
. (5.5)

With an appropriate acceptance-rejecting rule, transition distribution K ensures

that the sequence of sampled parameter values is equivalent to p (θ | y). After

some iterations, B, transition probabilities reach their stationary distribution.
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Then mean and variance of θ can be calculated empirically [20] by

E (θ) =
T∑

t=B+1

θ(t)/ (T −B) ,

V (θ) =
T∑

t=B+1

(
θ(t) − E (θ)

)2
/ (T −B) .

(5.6)

5.1.1 Metropolis Sampling

Metropolis sampling proposes a method that randomly walks around the param-

eter space using proposal distribution p
(
θcand | θ(t)

)
. Proposal distribution can

be selected as any symmetrical distribution. In each iteration, θcand is generated

from proposal density (e.g., θcand ∼ N(θ(t), σ2)), then its acceptance probability

is calculated by

p(t) = min

(
1,

p (θcand | y)
p (θ(t) | y)

)
= min

(
1,

p (y | θcand) p (θcand)
p (y | θ(t)) p (θ(t))

)
. (5.7)

If the p (θcand | y) is larger than the p
(
θ(t) | y

)
, θcand is accepted since its ac-

ceptance probability equals 1. If it is lower than 1, a uniform random variable

u(t) is generated, and the following rule is used for setting the next value of θ(t+1):

θ(t+1) =


θcand if p(t) ≤ u(t),

θ(t) if p(t) > u(t).

(5.8)

By using that rule, the algorithm draws values more frequently where posterior

density is higher, and randomness in Equation 5.8 allows values with lower pos-

terior densities.

5.1.2 Hamiltonian Monte Carlo

Although Metropolis sampling provides a practical solution to find posterior den-

sities, it is not an efficient algorithm. For a more efficient exploration, various
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extensions of Metropolis sampling are offered. One of the most popular exten-

sions of the Metropolis algorithm is called Hamiltonian Monte Carlo (HMC).

The name of the algorithm refers to Hamiltonian motion equations. HMC uses

a physics analogy to explore the parameter space more efficiently. Avoiding the

random walk enables a more efficient exploration, especially when the parameter

space is too complex or model parameters are correlated [22].

Hamiltonian motion equations determine the rate of change at momentum p

and position q by taking the partial derivative of Hamiltonian function H (q, p)

[22]. Thus given time, changes in position q and momentum p can be calculated

by solving the equations presented at (5.9). In the non-psychical applications,

position parameter q is the vector of interested parameters; in the case of Bayesian

sampling, it denotes the d-dimensional vector of model parameters. There is no

actual meaning for momentum parameter p in the statistical application of HMC;

instead, it is an auxiliary variable that provides more efficient position changing

in the model parameter space.

Hamiltonian motion equations can be written as

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

(5.9)

and the Hamiltonian function can be defined as

H (q, p) = U (q) +K (p) , (5.10)

where U (q) denotes the potential energy, and K (p) represents the kinetic energy.

For performing Bayesian sampling using Hamiltonian dynamics, posterior proba-

bilities must be related to the potential energy function. On the other hand, the

kinetic energy function uses a classical formula, where p as the momentum values

and diagonal matrix M , with m1, . . . ,md on the diagonal, as the mass. Then

U (q) = − log [P (q | y)] ,

K (p) = pTM−1p/2.

(5.11)
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In the sampling phase, candidates for parameters p and q can be selected using

the Hamiltonian motion equations presented in (5.9). To be able to implement

this, Equations 5.9 must be approximated using some discretization methods

[22]. The leapfrog method is an efficient approximation method that uses a half-

step(ϵ/2) for updating momentum p and takes a full step(ϵ) for updating position

q, and again takes a half-step for updating momentum p:

pi (t+ ϵ/2) = pi (t)− (ϵ/2)
∂U

∂qi
(q (t)) ,

qi (t+ ϵ) = qi (t) + ϵ
pi (t+ ϵ/2)

mi

,

pi (t+ ϵ) = pi (t+ ϵ/2)− (ϵ/2)
∂U

∂qi
(q (t+ ϵ)) .

(5.12)

As the last step of this construction, the Hamiltonian function can be used

as an energy function that appears in the canonical probability distribution in

statistical mechanics. Canonical probability distribution of a system that has

energy function E and states x can be defined as [22]

P (x) =
1

Z
exp

(
−E (x)

T

)
. (5.13)

By setting T = 1, considering Z as some constant, and using H (q, p) as the

energy function joint probability of q and p has the density function

P (q, p) =
1

Z
exp

(
−H (q, p)

1

)

=
1

Z
exp [−U (q)] exp [−K (q)]

= P (q | y) 1

Z
exp

(
pTM−1p

2

)
.

(5.14)

The resultant joint probability has a quite nice form. It can be seen that auxiliary

variable p is independent of model parameters q and p ∼ N (0,M). Thus, an

efficient sampling of posterior density can be achieved by iteratively applying

following steps [23]. To relate this procedure to previous discussions, let us use θ

instead of q and ϕ instead of p.
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1. Update ϕ by drawing a sample from N (0,M).

2. Set θ(t) to θ and ϕ(t) to ϕ.

3. Update θ and ϕ L times by using the Leapfrog method that is presented in

5.12.

Repeat L times:

(a) ϕ = ϕ+ ϵ
2
d log p(θ|y)

dθ

(b) θ = θ + ϵM−1ϕ

(c) ϕ = ϕ+ ϵ
2
d log p(θ|y)

dθ

4. Set θcand to θ and ϕcand to ϕ.

5. Calculate the acceptance probability

α =
p(θcand|y)p(ϕcand)
p(θ(t)|y)p(ϕ(t))

.

6. Set

θ(t+1) =


θcand with probability α,

θ(t) otherwise.

The effect of the momentum variable can be understood by considering sce-

narios according to position in parameter space. Let us assume we are taking

steps to a flat area in parameter space. Then the d log p(θ|y)
dθ

will equal zero, and we

will change position at a constant speed. In another scenario, we are taking steps

to a low-density area, and then the d log p(θ|y)
dθ

will be negative. Thus, our speed

will decrease until we make a return to the opposite direction, which is the high

density area. After the direction of the algorithm points higher density area, the
d log p(θ|y)

dθ
will be positive, and momentum will increase until the direction points

to a lower density area. So, the algorithm tends to explore denser areas, and the

quality of drawn samples will increase [23].
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5.2 Diagnostics and Comparison Methods

5.2.1 Chain Diagnostics

Two challenges arise in iterative sampling methods. Firstly, sampling chains

sometimes may not have converged yet. In the early iterations of sampling,

chains may have not reached to support of stationary distribution. So, a prema-

turely stopped sampling chain provides a posterior distribution that is not truly

representative. In some cases, separately monitored chains seem to achieve con-

vergence, but this can be a deceptive observation if chains do not converge to the

same distribution. Examples of both convergence problems are demonstrated in

Figure 5.1.

(a) Single chain (b) Multiple chains

Figure 5.1: Illustration of convergent problems

Although convergence problems can be related to insufficient iteration num-

bers, they can also indicate degeneracies and misspecifications in the model.

When the number of iterations is believed to be sufficient, not converged or

wrongly converged chains are a sign of strange geometries in parameters space.

These intricate geometries can be caused by misspecified models or wrong imple-

mentations. In that case, debugging the implementation or revising the model

39



can be a solution. On the other hand, a theoretically reasonable model can

have pathological degeneracies such as funnel degeneracies [24] or identifiability

issues [25]. Both problems can create extremely narrow parameter spaces, and

chains might be stuck in a local area or can not explore the parameter space in

a finite time.

The second problem may arise when the draws of chains are correlated. Al-

though an autocorrelated chain is not a serious issue, highly correlated samples

indicate inefficient samplings [23]. As in the convergence problem, highly corre-

lated samples might indicate degeneracies or misspecification.

5.2.1.1 R̂ values

Monitoring sampling chains is a useful visualization method that examines

whether chains are mixed and stationarity is achieved. However, visual diag-

nostics can be subjective in terms of understanding the mixing and should be

supported by some metrics. For assessing the mixing of sampling chains, a met-

ric R̂ can be defined using between-sequence variance B and within-sequence

variance W [23]. For achieving stationarity, iterations need to be reached to

some point. Generally, 1000 iterations are enough to achieve stationarity for a

nicely constructed model. Iterations up to this point are called warm-up iter-

ations, and they are discarded when statistics related to posterior density are

calculated. Let us assume that four independent chains were used for sampling

with 2000 iterations. After discarding warm-up iterations, the remaining samples

are divided into two parts. Then we obtain m = 8 chains with length n = 250. If

we denote each sample as θij (i = 1, . . . , n; j = 1, . . . ,m), then we can calculate

B =
n

m

m∑
j=1

(
θ.j − θ..

)
, where θ.j =

1

n

n∑
i=1

θij, θ.. =
1

m

m∑
j=1

θ.j,

W =
1

m

m∑
j=1

s2j , where s2 =
1

n− 1

n∑
i=1

(
θij − θ.j

)
.

(5.15)
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Then v̂ar+ (θ | y) can be estimated by taking the weighted average of between-

sequence variance B and within-sequence variance W as in

v̂ar+ (θ | y) = n− 1

n
W +

1

n
B. (5.16)

For obtaining mixed chains, B should be close enough to W . For assessing this,

the related metric can be defined as

R̂ =

√
v̂ar+ (θ | y)

W
. (5.17)

As B gets close to the W equation, R̂ will be closer to 1. R̂ values smaller than

1.1 are acceptable, and larger than 1.1 indicates chains are not mixed, and more

samples may be needed.

5.2.1.2 Effective number of simulation draws

After ensuring mixing, the effective number of independent draws can be calcu-

lated. If samples are independently distributed, there will be mn independent

draws. However, it’s mostly not true in practice, and samples have autocorrela-

tion [23]. Then the metric effective sample size can be defined as

neff =
mn

1 + 2
∑∞

t=1 ρt
. (5.18)

Here ρt is the autocorrelation of θ a lag t and can be calculated using

ρ̂ = 1− Vt

2v̂ar+
, where Vt =

1

m (n− t)

m∑
j=1

n∑
i=t+1

(
θi,j − θi−t,j

)2
. (5.19)

As an arbitrary but pratical choice, chains with
neff

mn
≥ 0.1 can be considered as

efficient sampling chains [26]. On the other hand, chains with an effective sample

ratio smaller than 0.1 indicate a problematic sampling process.

5.2.2 Posterior Predictive Checks

Posterior predictive checking provides both visual and statistical diagnostics to

assess the fitness of a Bayesian model. The idea is to produce new response vari-

ables yrep using the posterior distribution of model parameters and compare them
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with observed data y. Formally replications are generated from the conditional

density of yrep given y, which can be defined as

p (yrep | y) =
∫

p (yrep | θ) p (θ | y) dθ. (5.20)

In practice, posterior predictive distribution p (yrep | y) can be obtained by

generating response variables using the drawn parameters in each iteration of the

sampling phase. Then a p-value can be calculated using a test statistic T (y).

This test statistic can be a maximum, minimum, mean, median, and zero portion

of the distribution.

p− value = Pr [T (yrep) ≥ T (y)] (5.21)

For calculating the probability in Equation 5.21, the selected statistic T is

applied to each sampled distribution of y. Then p-value can be calculated by

looking at the portion yrep’s that is T (yrep) ≥ T (y). The visualization of this is

presented in Figure 5.2.

Figure 5.2: Posterior predictive check on mean

Posterior predictive distribution can also be used to compare the frequencies of

actual and replicated responses. This comparison can be visualized with posterior

retrodictive plots. These plots draw the histogram of each response in replicated

data and show the frequencies of actual responses in the same plot. For example,
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it can be understood whether the zero counts in the prediction match the exact

zero count. An example is presented in Figure 5.3

Figure 5.3: Posterior retrodictive plot

Here black lines indicate the number of counts in the data for the values shown

on the x-axis. Red areas represent the distribution of frequencies, and lighter

areas speak for less dense regions in the predictive distribution.

5.2.3 Loo and WAIC

Loo stands for the leave-one-out cross-validation, and it is the special case of K-

fold cross-validation that K equals to sample size of the data. So, calculation of

it is quite computational costly since each model needs to be fitted K times. The

computation time of such an application is not feasible when the data set size

is large. On the other hand, approximation of Loo is possible using importance

sampling, and Vehtari, Gelman, and Gabry [27] proposed a more robust method

that uses Pareto distribution in the importance sampling. To be able to assess

the models, a measure called loo estimate of expected log pointwise predictive
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density (elpdloo) is defined as

elpdloo =
n∑

i=1

log p (yi | y−i) , (5.22)

where

p (yi | y−i) =

∫
p (yi | θ) p (θ | y−i) dθ. (5.23)

The predictive distribution of observation yi in Equation 5.23 can be estimated

using ordinary importance sampling. Let us denote the importance weights of

observation i from the sample s

rsi =
1

p (yi | θs)
∝ p (θs | y−i)

p (θs | y)
. (5.24)

Then the approximation of p (yi | y−i) can be defined as

p (yi | y−i) ≈
∑S

s=1 r
s
i p (yi | θs)∑S
s=1 r

s
i

. (5.25)

However, this method is unstable, and sometimes the variance of the distri-

bution of importance ratios can be infinite. Thus the proposed methods fit a

Pareto distribution to some portion of the largest values of importance ratios and

smooth the upper tail of the distribution by replacing these largest values with

the expected order statistics of the fitted Pareto distribution. Furthermore, the

estimated shape parameter of the Pareto distribution k can be used to assess

reliability. The results indicate that sampling with k larger than 0.7 is problem-

atic. If the ratio of problematic transactions is too high, then the practitioner

should use more computationally costly methods like K-fold cross-validation [27].

Finally, the estimated loo can be defined as

l̂oo = −2 · elpdloo. (5.26)

The widely applicable AIC or Watanabe AIC (WAIC) is another metric for

making a Bayesian model comparison, and asymptotically it is similar to the loo.

elpdwaic =
n∑

i=1

log (yi | y)−
n∑

i=1

varpost [log p (yi | θ)] , (5.27)
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Here posterior variance can be calculated using the sample variance formula.

Similar to the loo, estimated WAIC can be approximated using the formula

ŴAIC = −2 · elpdwaic. (5.28)

In both metrics, smaller values indicate a better fit since they provide higher

predictive accuracy on unseen observations.
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Chapter 6

Hierarchical Bayesian Models for

Estimating Number of Installed

Refrigerators

In this chapter, various types of hierarchical Bayesian models are introduced, and

diagnostics are performed. Models have a similar hierarchical structure, meaning

that the same covariates and grouping factors are used. For forming the grouping

factor, the refrigerator and compressor models are combined. The refrigerator’s

installation and production months are used as covariates, and the age covariate

is discarded since it does not improve the models’ prediction accuracy. The

difference between models is the likelihood function of the response variable, and

this difference makes some models more suitable due to overdispersion and zero

counts in the data.

The Bayesian estimations of models are performed using Stan, a probabilistic

programming language. Stan uses a modified version of HMC that automatically

tunes some hyperparameters such as step size and the number of steps in each

iteration. Each estimation is performed with four parallel chains and 2000 it-

erations. The iteration numbers seem inadequate for those familiar with other

Bayesian sampling methods, such as Gibbs sampling. However, the quality of
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these samples is improved thanks to the efficient exploration [28]. Unfortunately,

smaller iteration numbers can’t provide a shorter run time since each iteration

requires exhausting calculations.

6.1 Models

We used five different count data models: Poisson, binomial, negative binomial,

beta-binomial, and hurdle. The general structure of the models is presented by

Directed Acyclic Graph (DAG) in Figure 6.1.

β̄

λβ

ν

βm

ym

α γϕ

Σ L η

σ τρ

nm

Figure 6.1: DAG for hierarchical models

6.1.1 Poisson Model

In this model, we used the Poisson likelihood function to model the number of

installed refrigerators. The structure of the model can be defined as follows.
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ym ∼ Pois (µm) ,

µm = exp (Xmβm + log (nm)) ,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) .

(6.1)

Here m denotes the grouping factor; namely, the refrigerator model. The

covariates’ effect β̄ is used as the mean of group-level effects β. Each covariate

effect β̄ is independently and identically distributed with Student’s t-distribution

with center at zero and scale 10. Here prior for β̄ can be considered as weakly

informative since it has enough large standard deviation. Student’s t-distribution

with the degree of freedom 3 has heavier tails than the normal distribution; thus,

it allows larger values and might be preferable. On the other hand, using a smaller

degree of freedom can cause longer run times or strange geometries that can’t be

easily explored. The group-level effects βm has multivariate normal distribution

with covariance matrix Σ generated with group-level standard deviation σ and

correlation matrix L. Each σ has half-Cauchy distribution with mean zero and a

scale parameter equal to 3. It is a better alternative to inverse-gamma distribution

since posterior distribution can be too sensitive to the choice of parameters of

inverse-gamma distribution [29]. The correlation matrix L has an LKJ correlation

distribution with a shape parameter equal to 2. For larger shape parameter values,

the correlation matrix is more like the identity matrix [30]. This distribution is

widespread among Stan users since its alternative inverse-Wishart distribution

creates unstable calculations in Stan. Lastly, the number of refrigerators ready

for installation is denoted with nm and used as an offset.
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6.1.2 Negative Binomial Model

In this model, we used the negative binomial likelihood function to model the

number of installed refrigerators. The structure of the model can be defined as

in Equation 6.2.

Here we have the same structure as in the Poisson model. Additionally, we de-

fined the overdispersion parameter α, which relaxes the equal mean and variance

assumption of the Poisson model. The overdispersion parameter α has a gamma

distribution with both scale and shape parameters equal to 0.01. This is a weakly

informative prior since the distribution is centered at 1 with a long right tail. So,

values smaller than 1 are more likely, but larger values are also allowed.

ym ∼ NB (µm, α) ,

µm = exp (Xmβm + log (nm)) ,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) ,

α ∼ Gamma (0.01, 0.01) .

(6.2)

6.1.3 Binomial Model

In this model, we used the binomial likelihood function to model the number of

installed refrigerators. The structure of the model can be defined as in Equa-

tion 6.3
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ym ∼ B (nm, µm) ,

logit (µm) = Xmβm,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) .

(6.3)

6.1.4 Beta-Binomial Model

In this model, we used the beta-binomial likelihood function. The structure of

the beta-binomial model can be defined as in Equation 6.4

ym ∼ BetaBin (nm, µm, α) ,

logit (µm) = Xmβm,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) ,

α ∼ Gamma (0.01, 0.01) .

(6.4)

Additional to the binomial distribution, we have an overdispersion parameter

α analogous to the negative binomial distribution.
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6.1.5 Negative Binomial Hurdle Model

ym | ym > 0 ∼ NB (µm, α) ,

P (ym = 0) = πm,

logit (πm) = Xmγm,

log (µm) = Xmβm + log (nm) ,

log (α) = Xθ,

γm ∼ N (γ̄,Σπ),

βm ∼ N (β̄,Σµ),

γ̄ ∼ t3 (0, 10) ,

β̄ ∼ t3 (0, 10) ,

θ ∼ t7 (0, 10) ,

Σπ = σπLπσ
T
π ,

Lπ ∼ LKJCorr (2) ,

σπ ∼ C+ (0, 3) ,

Σµ = σµLµσ
T
µ ,

Lµ ∼ LKJCorr (2) ,

σµ ∼ C+ (0, 3) .

(6.5)

In this model, we use two different likelihood functions to express positive and

zero counts separately. The first part of the model has a binomial likelihood

function that decides whether the response will be equal to zero or not. The

second part models the positive counts, and we used a truncated negative binomial

likelihood function for this purpose. We select negative binomial distribution

because we believe that data is overdispersed since there are many distinct values

from the mean, even if zeros are not included. In the first version of this model

probability of being zero did not have covariates, but we realized that this model

tended to over-estimate zero counts since there are many small positive integers

in the data. On the other hand, adding covariates to this probability might

create overfitting issues since small numbers are likely to appear as zero in the

unseen data. Nevertheless, we decided to add covariates for the binomial part

51



since approximated cross-validation scores suggested that. Also, we believe that

dispersion in positive counts might depend on refrigerator type. So, we estimate

inverse-dispersion parameter α using the refrigerator and compressor model as a

covariate.

6.2 Diagnostics

This section presents the summary of proposed hierarchical models and the re-

sults of Bayesian diagnostic tools. Variables that appear in model summaries are

described in Table 2.1.

6.2.1 Poisson Model Diagnostics

Listing 6.1 shows the Poisson model summary. The first block gives information

about the structure of the model and the sampling. The second block presents

the group-level effects, and the third shows the population-level effects. For the

model parameters, means of their posterior distribution, estimated errors, 95%

credible intervals, and R̂ values are presented in Listing 6.1.

Population-level installation month effects of June (InstMon6), July

(InstMon7), August (InstMon8), and September (InstMon9),on installation num-

bers are more significant than the effects of other months. On the other hand,

population-level production month effects are not very strong; some are insignif-

icant since their credible intervals include zero. On the other hand, population-

level production month effects are not very strong, and most of them are insignif-

icant since their credible intervals include zero. Group-level effects are strong

enough to indicate the refrigerator and compressor model influence population-

level effects.
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Listing 6.1: Summary of Poisson model

2 Family : po i s son

3 Links : mu = log

4 Formula : I n s t a l l e d ˜ 1 + InstMon + ProdMon

5 + o f f s e t ( l og ( Produced ) )

6 + (1 + InstMon + ProdMon | Model )

7 Data : I n s t a l l a t i o nT r a i n (Number o f ob s e rva t i on s : 15321)

8 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

9 t o t a l post−warmup draws = 4000

11 Group−Level E f f e c t s :

12 ˜Model (Number o f l e v e l s : 141)

13 Estimate Est . Error l−95% CI u−95% CI Rhat

14 sd ( I n t e r c ep t ) 0 .78 0 .05 0 .69 0 .88 1 .00

15 sd ( InstMon2 ) 0 .61 0 .05 0 .52 0 .72 1 .01

16 sd ( InstMon3 ) 0 .86 0 .06 0 .74 0 .99 1 .01

17 sd ( InstMon4 ) 0 .85 0 .06 0 .73 0 .98 1 .01

18 sd ( InstMon5 ) 0 .77 0 .06 0 .67 0 .89 1 .01

19 sd ( InstMon6 ) 0 .61 0 .04 0 .53 0 .70 1 .01

20 sd ( InstMon7 ) 0 .85 0 .06 0 .74 0 .97 1 .01

21 sd ( InstMon8 ) 0 .93 0 .06 0 .83 1 .05 1 .01

22 sd ( InstMon9 ) 0 .70 0 .04 0 .62 0 .79 1 .01

23 sd ( InstMon10 ) 0 .71 0 .05 0 .63 0 .81 1 .00

24 sd ( InstMon11 ) 0 .60 0 .04 0 .52 0 .69 1 .01

25 sd ( InstMon12 ) 0 .63 0 .05 0 .53 0 .73 1 .01

26 sd (ProdMon2) 0 .55 0 .05 0 .45 0 .66 1 .00

27 sd (ProdMon3) 0 .69 0 .06 0 .58 0 .82 1 .00

28 sd (ProdMon4) 0 .47 0 .04 0 .38 0 .56 1 .00

29 sd (ProdMon5) 0 .63 0 .05 0 .54 0 .75 1 .00

30 sd (ProdMon6) 0 .52 0 .04 0 .44 0 .61 1 .00

31 sd (ProdMon7) 0 .67 0 .05 0 .57 0 .78 1 .00

32 sd (ProdMon8) 0 .65 0 .05 0 .56 0 .76 1 .00

33 sd (ProdMon9) 0 .66 0 .06 0 .54 0 .80 1 .00

34 sd (ProdMon10) 0 .60 0 .05 0 .51 0 .72 1 .00

53



35 sd (ProdMon11) 0 .74 0 .07 0 .61 0 .89 1 .00

36 sd (ProdMon12) 0 .67 0 .07 0 .56 0 .81 1 .00

38 Population−Level E f f e c t s :

39 Estimate Est . Error l−95% CI u−95% CI Rhat

40 I n t e r c ep t −3.25 0 .07 −3.39 −3.11 1 .01

41 InstMon2 0 .14 0 .07 0 .02 0 .27 1 .02

42 InstMon3 0 .45 0 .08 0 .29 0 .61 1 .02

43 InstMon4 0 .38 0 .08 0 .22 0 .54 1 .01

44 InstMon5 0 .72 0 .07 0 .57 0 .86 1 .01

45 InstMon6 0 .97 0 .06 0 .85 1 .08 1 .02

46 InstMon7 1 .35 0 .08 1 .20 1 .50 1 .01

47 InstMon8 1 .40 0 .08 1 .23 1 .56 1 .01

48 InstMon9 1 .12 0 .07 0 .99 1 .24 1 .01

49 InstMon10 0 .82 0 .07 0 .69 0 .94 1 .02

50 InstMon11 0 .57 0 .06 0 .45 0 .68 1 .01

51 InstMon12 0 .42 0 .06 0 .30 0 .54 1 .01

52 ProdMon2 −0.12 0 .06 −0.25 −0.02 1 .00

53 ProdMon3 −0.18 0 .07 −0.33 −0.04 1 .00

54 ProdMon4 −0.13 0 .05 −0.23 −0.03 1 .00

55 ProdMon5 −0.11 0 .07 −0.25 0 .02 1 .01

56 ProdMon6 −0.08 0 .06 −0.19 0 .03 1 .00

57 ProdMon7 −0.13 0 .07 −0.27 0 .01 1 .00

58 ProdMon8 −0.12 0 .07 −0.26 0 .02 1 .00

59 ProdMon9 −0.01 0 .07 −0.15 0 .14 1 .00

60 ProdMon10 0 .06 0 .07 −0.08 0 .20 1 .00

61 ProdMon11 −0.12 0 .08 −0.29 0 .04 1 .00

62 ProdMon12 0 .07 0 .08 −0.09 0 .24 1 .00
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Chain diagnostics of the Poisson model are presented in Figure 6.2. R̂ values

indicate that sampling chains mixed, meaning that they converged to the same

distribution. On the other hand, there are many parameter samples with a neff

ratio lower than 0.1. This might indicate that the posterior distribution of some

parameters is not reliable.

(a) R̂ values (b) Ratio of effective sample size

Figure 6.2: Chain diagnostics

The posterior predictive checks on the Poisson model are presented in Fig-

ure 6.3. We used the distribution’s mean, max, and zero portions as T (y). Since

plots are obvious, we did not calculate P [T (yrep) ≥ T (y)]. The plot on the left

shows the behavior of the mean and the posterior predictive distribution nicely

centered around the mean of the actual data. On the other hand, the middle and

right plots show that the model has a poor performance in terms of matching

with maximum values and zero counts.
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(a) Mean (b) Max (c) Zero portion

Figure 6.3: Posterior predictive check on mean, max, and zero portion

The posterior retrodictive check for different intervals is presented in Fig-

ure 6.4. In the figure, the lightest brown area represents 99%, the darkest brown

area represents 20%, and the shades of brown between the lightest and darkest

represent the 60%, 40% of the posterior retrodictive distribution. Since the scale

of frequencies are quite different, we used four intervals to obtain better visualiza-

tion. The reader should notice that there are y values larger than 400, but their

frequencies are considerably low; thus, we only present the y values up to 400.

The plot for the first interval indicates that the Poisson model under-estimates

the frequencies of small numbers, and unfortunately, the difference is unreason-

ably high. After some value of y, the models start to over-estimate the counts

until y reaches 150. For larger values model performs better, but still, there are

some values out of 99% of posterior retrodictive distribution.

In Figure 6.5, we draw the 95% posterior predictive intervals according to

the levels of installation month. The light blue points close to dark blue points

indicate accurate predictions. It can be seen that there are many over- and under-

estimations in the plot. Figure 6.6 shows the 95% posterior predictive intervals

for each production month. Similarly, this plot indicates that predictions are not

very accurate.
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(a) Interval [0,100] (b) Interval [100,200]

(c) Interval [200,300] (d) Interval [300,400]

Figure 6.4: Posterior retrodictive check
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Figure 6.5: Installation month versus posterior predictive distri-
bution

Figure 6.6: Production month versus posterior predictive distri-
bution
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6.2.2 Negative Binomial Model Diagnostics

Listing 6.2 shows the negative binomial model summary. Similar to the Pois-

son model, population-level installation month effects of June, July, August, and

September are stronger than effects of other installation months. Although most

of the population-level the production month effects are significant, their influ-

ence is not prominent. The group-level effects of the negative binomial model

are weaker than the group-level effects of the Poisson model. The inverse-

overdispersion parameter is denoted with shape in the Listing 6.2 and its es-

timation indicates that data is overdispersed.

Listing 6.2: Summary of negative binomial model

2 Family : negbinomial

3 Links : mu = log ; shape = i d en t i t y

4 Formula : I n s t a l l e d ˜ 1 + InstMon + ProdMon

5 + o f f s e t ( l og ( Produced ) )

6 + (1 + InstMon + ProdMon | Model )

7 Data : I n s t a l l a t i o nT r a i n (Number o f ob s e rva t i on s : 15321)

8 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

9 t o t a l post−warmup draws = 4000

11 Group−Level E f f e c t s :

12 ˜Model (Number o f l e v e l s : 141)

13 Estimate Est . Error l−95% CI u−95% CI Rhat

14 sd ( I n t e r c ep t ) 0 .45 0 .03 0 .39 0 .51 1 .00

15 sd ( InstMon2 ) 0 .20 0 .07 0 .04 0 .33 1 .01

16 sd ( InstMon3 ) 0 .11 0 .06 0 .01 0 .22 1 .01

17 sd ( InstMon4 ) 0 .27 0 .05 0 .18 0 .38 1 .01

18 sd ( InstMon5 ) 0 .09 0 .05 0 .01 0 .20 1 .00

19 sd ( InstMon6 ) 0 .11 0 .05 0 .01 0 .21 1 .00

20 sd ( InstMon7 ) 0 .21 0 .04 0 .15 0 .28 1 .00

21 sd ( InstMon8 ) 0 .39 0 .04 0 .31 0 .46 1 .00

22 sd ( InstMon9 ) 0 .26 0 .04 0 .19 0 .33 1 .00

23 sd ( InstMon10 ) 0 .22 0 .04 0 .15 0 .31 1 .00
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24 sd ( InstMon11 ) 0 .18 0 .05 0 .08 0 .28 1 .00

25 sd ( InstMon12 ) 0 .30 0 .05 0 .21 0 .39 1 .00

26 sd (ProdMon2) 0 .21 0 .06 0 .09 0 .33 1 .00

27 sd (ProdMon3) 0 .19 0 .06 0 .05 0 .31 1 .01

28 sd (ProdMon4) 0 .11 0 .06 0 .01 0 .22 1 .01

29 sd (ProdMon5) 0 .37 0 .05 0 .27 0 .48 1 .00

30 sd (ProdMon6) 0 .08 0 .05 0 .00 0 .19 1 .00

31 sd (ProdMon7) 0 .14 0 .06 0 .02 0 .25 1 .01

32 sd (ProdMon8) 0 .10 0 .06 0 .01 0 .22 1 .00

33 sd (ProdMon9) 0 .26 0 .05 0 .17 0 .37 1 .00

34 sd (ProdMon10) 0 .37 0 .05 0 .27 0 .48 1 .00

35 sd (ProdMon11) 0 .22 0 .06 0 .11 0 .34 1 .00

36 sd (ProdMon12) 0 .34 0 .06 0 .22 0 .47 1 .00

38 Population−Level E f f e c t s :

39 Estimate Est . Error l−95% CI u−95% CI Rhat

40 I n t e r c ep t −3.24 0 .06 −3.35 −3.12 1 .00

41 InstMon2 0 .16 0 .05 0 .06 0 .26 1 .00

42 InstMon3 0 .47 0 .05 0 .38 0 .56 1 .00

43 InstMon4 0 .45 0 .05 0 .35 0 .56 1 .00

44 InstMon5 0 .78 0 .04 0 .69 0 .86 1 .00

45 InstMon6 1 .04 0 .04 0 .96 1 .13 1 .00

46 InstMon7 1 .38 0 .05 1 .29 1 .46 1 .01

47 InstMon8 1 .33 0 .05 1 .22 1 .44 1 .00

48 InstMon9 0 .99 0 .05 0 .90 1 .09 1 .00

49 InstMon10 0 .68 0 .05 0 .59 0 .77 1 .00

50 InstMon11 0 .37 0 .05 0 .28 0 .46 1 .00

51 InstMon12 0 .28 0 .05 0 .18 0 .38 1 .00

52 ProdMon2 −0.12 0 .04 −0.20 −0.03 1 .00

53 ProdMon3 −0.16 0 .04 −0.24 −0.08 1 .00

54 ProdMon4 −0.13 0 .04 −0.21 −0.05 1 .00

55 ProdMon5 −0.16 0 .05 −0.26 −0.05 1 .00

56 ProdMon6 −0.07 0 .04 −0.15 0 .01 1 .00

57 ProdMon7 −0.08 0 .04 −0.15 0 .00 1 .00

58 ProdMon8 0 .03 0 .04 −0.05 0 .12 1 .00
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59 ProdMon9 0 .11 0 .05 0 .01 0 .21 1 .00

60 ProdMon10 0 .18 0 .06 0 .07 0 .30 1 .00

61 ProdMon11 0 .08 0 .05 −0.02 0 .18 1 .00

62 ProdMon12 0 .14 0 .06 0 .02 0 .26 1 .00

64 Family S p e c i f i c Parameters :

65 Estimate Est . Error l−95% CI u−95% CI Rhat

66 shape 1 .34 0 .02 1 .30 1 .38 1 .00

The chain diagnostic plots in Figure 6.7 show that the negative binomial model

has a better mixing and effective sampling quality than the Poisson model. Since

there are no samples with neff ratio lower than 0.1, exploration of the parameter

space should be reliable.

(a) R̂ values (b) Ratio of effective sample size

Figure 6.7: Chain diagnostics

Contrary to posterior predictive plots of the Poisson model in Figure 6.3,

Figure 6.8 shows that the negative binomial model can match with larger values,

and the zero portion is much closer to the actual value. Nonetheless, frequencies

of means are distorted and under-estimate the true value.
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(a) Mean (b) Max (c) Zero Portion

Figure 6.8: Posterior predictive check on mean, max, and zero portion

(a) Interval [0,100] (b) Interval [100,200]

(c) Interval [200,300] (d) Interval [300,400]

Figure 6.9: Posterior retrodictive check
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Figure 6.10: Posterior predictive distribution for each installation

month

Figure 6.11: Posterior predictive distribution for each production

month
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By looking the Figure 6.9a, one can deduce that the negative binomial model

has a similar kind of behavior to the Poisson model for the y values between 0

and 100. Of course, the amount of over- and under-estimation of counts is more

dramatic for the Poisson model. One may notice that estimations of the counts

for y values between 100 and 200 are also improved. However, for larger values of

y, the performance of the negative binomial model is the same or slightly worse

than the Poisson model.

Figures 6.10 and 6.11 show that the negative binomial model under-estimates

larger values. Moreover, the 95% posterior intervals are extremely large, and

predictions are unstable.

6.2.3 Binomial Model Diagnostics

The summary of the binomial model is presented in Listings 6.3, and chain di-

agnostics are shown in Figure 6.12. Both model summary and chain diagnostics

plots of the binomial model are similar to the summary and chain diagnostics

plots of the Poisson model. One can make similar interpretations.

Listing 6.3: Summary of binomial model

2 Family : b inomial

3 Links : mu = l o g i t

4 Formula : I n s t a l l e d | t r i a l s ( Produced ) ˜ 1 + InstMon + ProdMon

5 + (1 + InstMon + ProdMon | Model )

6 Data : I n s t a l l a t i o nT r a i n (Number o f ob s e rva t i on s : 15321)

7 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

8 t o t a l post−warmup draws = 4000

10 Group−Level E f f e c t s :

11 ˜Model (Number o f l e v e l s : 141)

12 Estimate Est . Error l−95% CI u−95% CI

13 sd ( I n t e r c ep t ) 0 .85 0 .06 0 .74 0 .97

14 sd ( InstMon2 ) 0 .65 0 .05 0 .56 0 .76
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15 sd ( InstMon3 ) 0 .95 0 .07 0 .82 1 .10

16 sd ( InstMon4 ) 0 .92 0 .07 0 .79 1 .05

17 sd ( InstMon5 ) 0 .86 0 .06 0 .75 0 .99

18 sd ( InstMon6 ) 0 .69 0 .05 0 .60 0 .79

19 sd ( InstMon7 ) 0 .97 0 .07 0 .85 1 .11

20 sd ( InstMon8 ) 1 .11 0 .07 0 .99 1 .25

21 sd ( InstMon9 ) 0 .79 0 .05 0 .70 0 .90

22 sd ( InstMon10 ) 0 .80 0 .06 0 .70 0 .91

23 sd ( InstMon11 ) 0 .66 0 .05 0 .57 0 .76

24 sd ( InstMon12 ) 0 .70 0 .06 0 .59 0 .82

25 sd (ProdMon2) 0 .63 0 .06 0 .52 0 .75

26 sd (ProdMon3) 0 .78 0 .07 0 .66 0 .92

27 sd (ProdMon4) 0 .54 0 .05 0 .45 0 .65

28 sd (ProdMon5) 0 .75 0 .06 0 .64 0 .89

29 sd (ProdMon6) 0 .64 0 .05 0 .53 0 .75

30 sd (ProdMon7) 0 .79 0 .06 0 .67 0 .93

31 sd (ProdMon8) 0 .80 0 .06 0 .69 0 .93

32 sd (ProdMon9) 0 .78 0 .07 0 .65 0 .94

33 sd (ProdMon10) 0 .68 0 .06 0 .58 0 .81

34 sd (ProdMon11) 0 .82 0 .08 0 .67 0 .99

35 sd (ProdMon12) 0 .77 0 .07 0 .64 0 .93

37 Population−Level E f f e c t s :

38 Estimate Est . Error l−95% CI u−95% CI Rhat

39 I n t e r c ep t −3.20 0 .08 −3.36 −3.05 1 .02

40 InstMon2 0 .15 0 .07 0 .01 0 .28 1 .01

41 InstMon3 0 .49 0 .09 0 .32 0 .66 1 .01

42 InstMon4 0 .41 0 .09 0 .24 0 .58 1 .01

43 InstMon5 0 .79 0 .08 0 .63 0 .95 1 .03

44 InstMon6 1 .06 0 .07 0 .93 1 .20 1 .01

45 InstMon7 1 .53 0 .09 1 .35 1 .70 1 .01

46 InstMon8 1 .58 0 .10 1 .38 1 .78 1 .02

47 InstMon9 1 .22 0 .07 1 .09 1 .37 1 .01

48 InstMon10 0 .88 0 .08 0 .74 1 .03 1 .01

49 InstMon11 0 .60 0 .06 0 .48 0 .73 1 .01
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50 InstMon12 0 .43 0 .07 0 .30 0 .57 1 .00

51 ProdMon2 −0.13 0 .07 −0.26 0 .01 1 .00

52 ProdMon3 −0.19 0 .08 −0.35 −0.03 1 .01

53 ProdMon4 −0.15 0 .06 −0.26 −0.03 1 .00

54 ProdMon5 −0.10 0 .08 −0.26 0 .07 1 .01

55 ProdMon6 −0.08 0 .07 −0.22 0 .05 1 .00

56 ProdMon7 −0.14 0 .08 −0.30 0 .01 1 .00

57 ProdMon8 −0.14 0 .09 −0.31 0 .04 1 .00

58 ProdMon9 0 .01 0 .09 −0.18 0 .19 1 .01

59 ProdMon10 0 .07 0 .08 −0.09 0 .23 1 .00

60 ProdMon11 −0.11 0 .09 −0.29 0 .07 1 .00

61 ProdMon12 0 .08 0 .09 −0.10 0 .27 1 .00

As in the chain diagnostic plots, all posterior predictive plots demonstrate the

similarity between the Poisson and binomial models. This might be expected

since as trial numbers become larger binomial distribution converges to Poisson

distribution. For most of the observations in the data, n is quite large; thus,

binomial distribution executes its limiting behavior.

(a) R̂ values (b) Ratio of effective sample size

Figure 6.12: Chain diagnostics
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(a) Mean (b) Max (c) Zero portion

Figure 6.13: Posterior predictive check on mean, max, and zero Portion

(a) Interval [0,100] (b) Interval [100,200]

(c) Interval [200,300] (d) Interval [300,400]

Figure 6.14: Posterior retrodictive check
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Figure 6.15: Posterior predictive distribution for each installation

month

Figure 6.16: Posterior predictive distribution for each production

month
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6.2.4 Beta-Binomial Model Diagnostics

The model summary of the beta-binomial model is presented in the Listing 6.4.

Similar to the other models, population-level installation month effects are more

significant. Most of the population-level production month effects are insignifi-

cant. Similar to the negative binomial model, group-level effects are weak.

Listing 6.4: Summary of beta-binomial model

2 Family : beta b inomia l2

3 Links : mu = l o g i t ; phi = i d e n t i t y

4 Formula : I n s t a l l e d | t r i a l s ( Produced ) ˜ 1 + InstMon + ProdMon

5 + (1 + InstMon + ProdMon | Model )

6 Data : I n s t a l l a t i o nT r a i n (Number o f ob s e rva t i on s : 15321)

7 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

8 t o t a l post−warmup draws = 4000

10 Group−Level E f f e c t s :

11 ˜Model (Number o f l e v e l s : 141)

12 Estimate Est . Error l−95% CI u−95% CI Rhat

13 sd ( I n t e r c ep t ) 0 .39 0 .03 0 .33 0 .46 1 .00

14 sd ( InstMon2 ) 0 .06 0 .04 0 .00 0 .17 1 .00

15 sd ( InstMon3 ) 0 .10 0 .05 0 .01 0 .21 1 .00

16 sd ( InstMon4 ) 0 .20 0 .05 0 .10 0 .30 1 .00

17 sd ( InstMon5 ) 0 .09 0 .05 0 .00 0 .20 1 .00

18 sd ( InstMon6 ) 0 .16 0 .05 0 .05 0 .25 1 .00

19 sd ( InstMon7 ) 0 .26 0 .03 0 .20 0 .33 1 .00

20 sd ( InstMon8 ) 0 .42 0 .04 0 .35 0 .50 1 .00

21 sd ( InstMon9 ) 0 .22 0 .04 0 .15 0 .29 1 .00

22 sd ( InstMon10 ) 0 .15 0 .05 0 .05 0 .24 1 .00

23 sd ( InstMon11 ) 0 .10 0 .05 0 .01 0 .20 1 .00

24 sd ( InstMon12 ) 0 .24 0 .04 0 .16 0 .33 1 .00

25 sd (ProdMon2) 0 .33 0 .05 0 .23 0 .43 1 .00

26 sd (ProdMon3) 0 .29 0 .05 0 .20 0 .38 1 .00

27 sd (ProdMon4) 0 .22 0 .05 0 .13 0 .31 1 .00
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28 sd (ProdMon5) 0 .26 0 .05 0 .18 0 .36 1 .00

29 sd (ProdMon6) 0 .19 0 .06 0 .06 0 .30 1 .00

30 sd (ProdMon7) 0 .28 0 .05 0 .19 0 .38 1 .00

31 sd (ProdMon8) 0 .18 0 .07 0 .03 0 .32 1 .00

32 sd (ProdMon9) 0 .29 0 .05 0 .19 0 .40 1 .00

33 sd (ProdMon10) 0 .36 0 .05 0 .27 0 .47 1 .00

34 sd (ProdMon11) 0 .21 0 .06 0 .09 0 .32 1 .00

35 sd (ProdMon12) 0 .28 0 .06 0 .17 0 .40 1 .00

37 Population−Level E f f e c t s :

38 Estimate Est . Error l−95% CI u−95% CI Rhat

39 I n t e r c ep t −2.99 0 .05 −3.09 −2.89 1 .00

40 InstMon2 0 .15 0 .05 0 .06 0 .24 1 .00

41 InstMon3 0 .39 0 .05 0 .30 0 .48 1 .00

42 InstMon4 0 .32 0 .05 0 .22 0 .41 1 .00

43 InstMon5 0 .64 0 .04 0 .56 0 .73 1 .00

44 InstMon6 0 .84 0 .05 0 .76 0 .93 1 .00

45 InstMon7 1 .21 0 .05 1 .12 1 .30 1 .00

46 InstMon8 1 .14 0 .06 1 .03 1 .25 1 .00

47 InstMon9 0 .80 0 .05 0 .71 0 .89 1 .00

48 InstMon10 0 .52 0 .04 0 .43 0 .61 1 .00

49 InstMon11 0 .30 0 .04 0 .21 0 .38 1 .00

50 InstMon12 0 .25 0 .05 0 .15 0 .34 1 .00

51 ProdMon2 −0.08 0 .05 −0.18 0 .02 1 .00

52 ProdMon3 −0.13 0 .05 −0.22 −0.04 1 .00

53 ProdMon4 −0.04 0 .04 −0.12 0 .05 1 .00

54 ProdMon5 −0.06 0 .04 −0.15 0 .03 1 .00

55 ProdMon6 −0.02 0 .04 −0.10 0 .06 1 .00

56 ProdMon7 −0.07 0 .04 −0.15 0 .02 1 .00

57 ProdMon8 0 .01 0 .05 −0.09 0 .09 1 .00

58 ProdMon9 0 .09 0 .05 −0.02 0 .19 1 .00

59 ProdMon10 0 .08 0 .06 −0.03 0 .19 1 .00

60 ProdMon11 0 .03 0 .05 −0.07 0 .12 1 .00

61 ProdMon12 0 .09 0 .05 −0.02 0 .20 1 .00
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63 Family S p e c i f i c Parameters :

64 Estimate Est . Error l−95% CI u−95% CI Rhat

65 phi 15 .33 0 .23 14 .88 15 .79 1 .00

(a) R̂ values (b) Ratio of effective sample size

Figure 6.17: Chain diagnostics

(a) Mean (b) Max (c) Zero portion

Figure 6.18: Posterior predictive check on mean, max, and zero portion
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Figure 6.17 shows that chain diagnostics of the beta-binomial model are de-

cent. Considering the previous plots, one can conclude that overdispersed models

provide better sampling in this structure.

Although one may expect similarities between the negative binomial and the

beta-binomial model, Figure 6.18 shows that posterior predictive distributions

are slightly different. Unlike the negative binomial model, for this model the zero

portion is over-estimated rather than under-estimated.

(a) Interval [0,100] (b) Interval [100,200]

(c) Interval [200,300] (d) Interval [300,400]

Figure 6.19: Posterior retrodictive check
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Figure 6.20: Posterior predictive distribution for each installation

month

Figure 6.21: Posterior predictive distribution for each production

month
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Figure 6.19 indicates that the beta-binomial model has similar behavior to the

negative binomial in terms of counts of y. Figures 6.20 and Figures 6.21 shows

that beta-binomial under-estimates the larger installation numbers similar to the

negative binomial model.

6.2.5 Negative Binomial Hurdle Model Diagnostics

Listing 6.5 shows the summary of the negative binomial hurdle model.

Population-level installation month effects of July (InstMon7) and August

(InstMon8) on positive counts are more sinificant than the effects of other months.

On the other hand, population-level production month effects on positive counts

are insignificant; most of the estimated parameters are very close to zero. Group-

level effects of installation month and production month on positive counts are

not very strong. This indicates that the refrigerator model doesn’t influence

population-level effects on positive counts.

Listing 6.5 shows that the population-level effects on zero counts are negative,

meaning that they decrease the probability of zero installation. One can observe

that the group-level effects of production month are strong. This indicates that

the refrigerator model influences the effect of production month on zero counts.

The estimated effect of refrigerator type on inverse-overdispersion parameter is

also presented in Listing 6.5. One can notice that the effects of refrigerator types

are quite different.

Listing 6.5: Summary of negative binomial hurdle model

1 Family : hurd le negb inomia l

2 Links : mu = log ; shape = log ; hu = l o g i t

3 Formula : I n s t a l l e d ˜ 1 + InstMon + ProdMon

4 + o f f s e t ( l og ( Produced ) ) + (1 + InstMon

5 + ProdMon | Model )

6 Ze r o I n s t a l l e d ˜ 1 + InstMon + ProdMon

7 + (1 + InstMon + ProdMon | Model )

8 shape ˜ Model
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9 Data : I n s t a l l a t i o nT r a i n (Number o f ob s e rva t i on s : 15321)

10 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

11 t o t a l post−warmup draws = 4000

13 Group−Level E f f e c t s :

14 ˜Model (Number o f l e v e l s : 141)

15 Estimate Est . Error l−95% CI u−95% CI Rhat

16 sd ( I n t e r c ep t ) 0 .44 0 .04 0 .37 0 .51 1 .00

17 sd ( InstMon2 ) 0 .21 0 .05 0 .11 0 .31 1 .00

18 sd ( InstMon3 ) 0 .13 0 .06 0 .02 0 .23 1 .01

19 sd ( InstMon4 ) 0 .18 0 .05 0 .07 0 .28 1 .00

20 sd ( InstMon5 ) 0 .12 0 .05 0 .02 0 .21 1 .01

21 sd ( InstMon6 ) 0 .14 0 .05 0 .03 0 .23 1 .01

22 sd ( InstMon7 ) 0 .23 0 .04 0 .16 0 .30 1 .01

23 sd ( InstMon8 ) 0 .35 0 .04 0 .29 0 .42 1 .00

24 sd ( InstMon9 ) 0 .22 0 .04 0 .16 0 .30 1 .00

25 sd ( InstMon10 ) 0 .18 0 .04 0 .08 0 .26 1 .00

26 sd ( InstMon11 ) 0 .16 0 .05 0 .05 0 .25 1 .00

27 sd ( InstMon12 ) 0 .26 0 .04 0 .17 0 .34 1 .00

28 sd (ProdMon2) 0 .05 0 .03 0 .00 0 .13 1 .00

29 sd (ProdMon3) 0 .06 0 .04 0 .00 0 .15 1 .00

30 sd (ProdMon4) 0 .10 0 .05 0 .01 0 .20 1 .00

31 sd (ProdMon5) 0 .20 0 .05 0 .10 0 .31 1 .01

32 sd (ProdMon6) 0 .08 0 .05 0 .00 0 .19 1 .00

33 sd (ProdMon7) 0 .15 0 .04 0 .06 0 .23 1 .00

34 sd (ProdMon8) 0 .13 0 .05 0 .02 0 .23 1 .01

35 sd (ProdMon9) 0 .22 0 .04 0 .14 0 .31 1 .00

36 sd (ProdMon10) 0 .31 0 .05 0 .22 0 .41 1 .00

37 sd (ProdMon11) 0 .14 0 .06 0 .02 0 .25 1 .00

38 sd (ProdMon12) 0 .30 0 .06 0 .18 0 .43 1 .00

39 sd ( z e r o I n t e r c e p t ) 1 .44 0 .14 1 .19 1 .73 1 .00

40 sd ( zero InstMon2 ) 0 .31 0 .18 0 .01 0 .68 1 .01

41 sd ( zero InstMon3 ) 0 .15 0 .11 0 .01 0 .42 1 .00

42 sd ( zero InstMon4 ) 0 .18 0 .13 0 .01 0 .49 1 .00

43 sd ( zero InstMon5 ) 0 .25 0 .18 0 .01 0 .65 1 .01
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44 sd ( zero InstMon6 ) 0 .15 0 .12 0 .01 0 .44 1 .00

45 sd ( zero InstMon7 ) 0 .26 0 .19 0 .01 0 .70 1 .00

46 sd ( zero InstMon8 ) 0 .56 0 .24 0 .08 1 .02 1 .00

47 sd ( zero InstMon9 ) 0 .33 0 .21 0 .02 0 .79 1 .00

48 sd ( zero InstMon10 ) 0 .21 0 .15 0 .01 0 .55 1 .00

49 sd ( zero InstMon11 ) 0 .19 0 .14 0 .01 0 .50 1 .00

50 sd ( zero InstMon12 ) 1 .11 0 .85 0 .04 3 .17 1 .00

51 sd ( zero ProdMon2 ) 1 .31 0 .18 0 .97 1 .69 1 .00

52 sd ( zero ProdMon3 ) 1 .23 0 .22 0 .85 1 .69 1 .00

53 sd ( zero ProdMon4 ) 1 .12 0 .21 0 .74 1 .59 1 .00

54 sd ( zero ProdMon5 ) 1 .37 0 .24 0 .94 1 .85 1 .00

55 sd ( zero ProdMon6 ) 1 .04 0 .26 0 .56 1 .60 1 .00

56 sd ( zero ProdMon7 ) 1 .15 0 .29 0 .62 1 .76 1 .00

57 sd ( zero ProdMon8 ) 2 .07 0 .37 1 .45 2 .87 1 .00

58 sd ( zero ProdMon9 ) 2 .07 0 .43 1 .36 2 .98 1 .00

59 sd ( zero ProdMon10 ) 1 .38 0 .31 0 .83 2 .05 1 .00

60 sd ( zero ProdMon11 ) 1 .44 0 .37 0 .79 2 .25 1 .00

61 sd ( zero ProdMon12 ) 1 .28 0 .31 0 .72 1 .99 1 .00

63 Population−Level E f f e c t s :

64 Estimate Est . Error l−95% CI u−95% CI Rhat

65 I n t e r c ep t −3.07 0 .06 −3.18 −2.96 1 .01

66 shape In t e r c ep t 0 .37 0 .21 −0.05 0 .76 1 .03

67 z e r o I n t e r c e p t −0.87 0 .18 −1.24 −0.51 1 .00

68 InstMon2 0 .06 0 .05 −0.04 0 .16 1 .00

69 InstMon3 0 .36 0 .05 0 .27 0 .45 1 .00

70 InstMon4 0 .35 0 .05 0 .25 0 .44 1 .00

71 InstMon5 0 .64 0 .04 0 .55 0 .73 1 .00

72 InstMon6 0 .92 0 .04 0 .83 1 .00 1 .00

73 InstMon7 1 .20 0 .05 1 .10 1 .29 1 .00

74 InstMon8 1 .16 0 .06 1 .05 1 .27 1 .00

75 InstMon9 0 .80 0 .05 0 .70 0 .89 1 .00

76 InstMon10 0 .49 0 .05 0 .40 0 .58 1 .01

77 InstMon11 0 .19 0 .05 0 .10 0 .28 1 .00

78 InstMon12 0 .00 0 .05 −0.10 0 .10 1 .00
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79 ProdMon2 −0.09 0 .03 −0.16 −0.02 1 .00

80 ProdMon3 −0.12 0 .03 −0.19 −0.05 1 .00

81 ProdMon4 −0.12 0 .04 −0.19 −0.05 1 .00

82 ProdMon5 −0.14 0 .04 −0.23 −0.06 1 .00

83 ProdMon6 −0.06 0 .04 −0.13 0 .02 1 .00

84 ProdMon7 −0.07 0 .04 −0.15 0 .01 1 .00

85 ProdMon8 0 .03 0 .04 −0.06 0 .11 1 .00

86 ProdMon9 0 .09 0 .05 0 .01 0 .19 1 .00

87 ProdMon10 0 .16 0 .05 0 .06 0 .28 1 .00

88 ProdMon11 0 .02 0 .04 −0.06 0 .11 1 .00

89 ProdMon12 0 .11 0 .06 −0.01 0 .22 1 .00

90 shape Modela1M8f 3 .49 4 .09 −2.45 13 .56 1 .00

91 shape Modela10M8e 4 .83 3 .93 0 .31 14 .62 1 .00

92 shape Modela11M8b 4 .22 3 .84 −0.90 13 .85 1 .00

93 shape Modela2M8b 0 .21 0 .30 −0.37 0 .78 1 .01

94 shape Modela3M8b 0 .25 0 .29 −0.33 0 .82 1 .01

95 shape Modela6M3b 0 .58 1 .04 −1.09 2 .85 1 .00

96 shape Modela7M8b 0 .42 0 .54 −0.66 1 .45 1 .00

97 shape Modela8M3b 1 .07 0 .62 −0.09 2 .35 1 .00

98 shape Modela9M8b 3 .51 3 .90 −1.32 13 .33 1 .00

99 shape Modelaa1M1a −1.65 0 .29 −2.23 −1.09 1 .01

100 shape Modelaa1M1d −0.21 0 .26 −0.70 0 .32 1 .02

101 shape Modelab1M1c −0.01 0 .24 −0.48 0 .46 1 .02

102 shape Modelab1M4c −0.28 0 .99 −2.71 1 .15 1 .01

103 shape Modelab1M6d 3 .26 4 .26 −3.83 13 .75 1 .00

104 shape Modelab2M1a −0.98 0 .29 −1.54 −0.41 1 .02

105 shape Modelab2M1d −1.88 0 .42 −2.80 −1.13 1 .01

106 shape Modelab2M2f −2.42 1 .12 −5.09 −0.85 1 .00

107 shape Modelab3M4c −0.22 0 .27 −0.75 0 .31 1 .02

108 shape Modelac2M4c 0 .29 0 .26 −0.22 0 .81 1 .02

109 shape Modelad1M1c −0.46 0 .55 −1.64 0 .51 1 .00

110 shape Modelba1M1b −0.12 0 .24 −0.57 0 .36 1 .02

111 shape Modelba1M3a 0 .78 0 .52 −0.26 1 .78 1 .00

112 shape Modelba1M3c −0.02 0 .26 −0.52 0 .49 1 .02

113 shape Modelba10M5a −0.62 0 .26 −1.15 −0.11 1 .02
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114 shape Modelba10M6c 0 .48 0 .32 −0.14 1 .11 1 .01

115 shape Modelba11M4a −0.26 0 .26 −0.76 0 .24 1 .02

116 shape Modelba12M1b 0 .96 0 .88 −0.19 2 .27 1 .00

117 shape Modelba12M3a 0 .07 0 .60 −1.16 1 .20 1 .00

118 shape Modelba13M1b 5 .09 3 .89 0 .47 15 .14 1 .00

119 shape Modelba14M4b 0 .89 0 .28 0 .36 1 .43 1 .01

120 shape Modelba15M3a 2 .73 4 .48 −4.44 13 .78 1 .00

121 shape Modelba15M4b 1 .25 0 .32 0 .64 1 .90 1 .01

122 shape Modelba2M1b −0.36 0 .24 −0.82 0 .14 1 .02

123 shape Modelba2M3a 0 .18 0 .41 −0.65 0 .95 1 .01

124 shape Modelba2M3c 0 .07 0 .27 −0.45 0 .60 1 .02

125 shape Modelba3M1b 0 .34 0 .24 −0.12 0 .84 1 .01

126 shape Modelba3M3a 0 .09 0 .26 −0.39 0 .61 1 .02

127 shape Modelba3M3c 0 .01 0 .36 −0.73 0 .72 1 .01

128 shape Modelba3M4b −0.03 0 .25 −0.51 0 .49 1 .02

129 shape Modelba4M3c −0.33 0 .26 −0.83 0 .18 1 .02

130 shape Modelba4M6e 0 .04 0 .23 −0.41 0 .52 1 .02

131 shape Modelba5M2d 0 .06 0 .43 −0.80 0 .87 1 .01

132 shape Modelba5M4a 0 .29 0 .22 −0.14 0 .75 1 .02

133 shape Modelba6M1b −1.56 0 .70 −3.17 −0.41 1 .00

134 shape Modelba6M3a 0 .01 0 .23 −0.42 0 .47 1 .02

135 shape Modelba6M3c 0 .22 0 .27 −0.29 0 .76 1 .01

136 shape Modelba7M3c −0.76 1 .89 −5.37 1 .98 1 .01

137 shape Modelba7M4b −0.68 0 .24 −1.15 −0.17 1 .02

138 shape Modelba7M6c 0 .69 0 .29 0 .13 1 .26 1 .01

139 shape Modelba8M3c 0 .16 0 .49 −0.84 1 .07 1 .01

140 shape Modelba8M4b −0.19 0 .30 −0.77 0 .40 1 .01

141 shape Modelba9M2f 0 .77 0 .30 0 .19 1 .35 1 .01

142 shape Modelba9M5a −0.10 0 .23 −0.54 0 .36 1 .02

143 shape Modelbb1M1b −0.10 0 .26 −0.63 0 .42 1 .02

144 shape Modelbb1M3a −0.88 0 .38 −1.69 −0.19 1 .01

145 shape Modelbb1M3c −1.18 0 .47 −2.21 −0.34 1 .01

146 shape Modelbb10M4b −0.45 0 .30 −1.04 0 .13 1 .01

147 shape Modelbb11M5a −0.48 0 .27 −1.01 0 .06 1 .02

148 shape Modelbb13M3a −0.78 0 .79 −2.45 0 .61 1 .00
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149 shape Modelbb13M3c −2.14 0 .97 −4.25 −0.43 1 .00

150 shape Modelbb13M4b −0.47 0 .63 −1.75 0 .68 1 .00

151 shape Modelbb14M3d 0 .49 0 .23 0 .04 0 .96 1 .02

152 shape Modelbb14M6c 0 .63 0 .24 0 .17 1 .11 1 .02

153 shape Modelbb15M3d 1 .05 0 .26 0 .57 1 .58 1 .02

154 shape Modelbb16M3d 1 .11 0 .33 0 .48 1 .78 1 .01

155 shape Modelbb17M3a 0 .91 0 .30 0 .34 1 .49 1 .02

156 shape Modelbb17M3c 0 .58 0 .28 0 .03 1 .13 1 .01

157 shape Modelbb18M3d −0.81 2 .34 −4.70 4 .73 1 .00

158 shape Modelbb18M4a −0.03 0 .28 −0.58 0 .53 1 .01

159 shape Modelbb19M1b 4 .28 3 .42 0 .03 12 .91 1 .00

160 shape Modelbb19M3a −0.99 0 .44 −1.89 −0.17 1 .01

161 shape Modelbb19M4a 1 .23 0 .61 0 .21 2 .51 1 .00

162 shape Modelbb2M3a 0 .53 0 .25 0 .05 1 .02 1 .02

163 shape Modelbb2M3c 0 .11 0 .43 −0.75 0 .94 1 .01

164 shape Modelbb20M4a 0 .91 0 .33 0 .28 1 .57 1 .01

165 shape Modelbb21M4a 0 .48 0 .36 −0.25 1 .17 1 .01

166 shape Modelbb22M4a 0 .47 0 .35 −0.21 1 .14 1 .01

167 shape Modelbb3M3c −1.47 1 .23 −4.69 0 .23 1 .00

168 shape Modelbb3M3d 1 .11 0 .31 0 .48 1 .73 1 .01

169 shape Modelbb3M6c 0 .58 0 .25 0 .10 1 .07 1 .02

170 shape Modelbb8M4a −0.05 0 .24 −0.50 0 .43 1 .02

171 shape Modelbb9M3d 0 .92 0 .26 0 .43 1 .43 1 .02

172 shape Modelbb9M3e 0 .13 0 .27 −0.40 0 .66 1 .01

173 shape ModelbcM3c 1 .63 0 .49 0 .67 2 .61 1 .00

174 shape Modelca2M2a 1 .90 3 .69 −2.33 11 .20 1 .00

175 shape Modelcb1M3b 0 .72 0 .23 0 .29 1 .17 1 .02

176 shape Modelcb2M3b 0 .62 0 .23 0 .17 1 .09 1 .02

177 shape Modelcb3M3b 0 .20 0 .85 −1.68 1 .73 1 .00

178 shape Modelcb4M3b 0 .94 1 .80 −0.99 6 .12 1 .00

179 shape Modelcc1M3b 0 .04 0 .23 −0.40 0 .52 1 .02

180 shape Modelcc2M3b −0.35 0 .27 −0.90 0 .19 1 .02

181 shape Modelcc3M3b 0 .90 0 .27 0 .39 1 .43 1 .02

182 shape Modelda1M4a 0 .45 0 .23 0 .01 0 .93 1 .02

183 shape Modelda2M4a 0 .90 0 .24 0 .44 1 .39 1 .02
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184 shape Modelda4M3a 0 .83 0 .28 0 .28 1 .38 1 .02

185 shape Modelda4M4a 1 .05 0 .27 0 .54 1 .58 1 .02

186 shape Modeldb1M3a 0 .07 0 .24 −0.39 0 .56 1 .02

187 shape Modeldb1M4a 0 .80 0 .30 0 .21 1 .35 1 .01

188 shape Modeldb2M3a 0 .49 0 .24 0 .02 0 .98 1 .02

189 shape Modeldb2M4a 0 .70 0 .42 −0.11 1 .49 1 .01

190 shape Modeldb2M8c 0 .63 0 .39 −0.14 1 .40 1 .01

191 shape Modeldb3M4a 1 .04 0 .47 0 .07 1 .95 1 .00

192 shape Modelea1M5a −0.80 0 .26 −1.30 −0.30 1 .02

193 shape Modelea2M5a 0 .03 0 .26 −0.47 0 .53 1 .02

194 shape Modeleb1M6a 0 .09 0 .24 −0.35 0 .56 1 .03

195 shape Modeleb2M6a 0 .01 0 .29 −0.54 0 .57 1 .02

196 shape Modeleb3M2f −0.80 0 .43 −1.72 −0.06 1 .01

197 shape Modeleb3M5a 0 .29 0 .25 −0.20 0 .80 1 .02

198 shape Modeleb4M3e −0.66 0 .56 −1.97 0 .24 1 .01

199 shape Modeleb4M6a 0 .01 0 .24 −0.45 0 .50 1 .02

200 shape Modeleb5M5a 0 .42 0 .30 −0.17 1 .01 1 .01

201 shape Modeleb6M2f 1 .36 1 .75 −1.01 6 .35 1 .00

202 shape Modeleb6M5a 0 .98 0 .27 0 .45 1 .52 1 .01

203 shape Modelec1M3d −0.57 0 .72 −2.33 0 .53 1 .00

204 shape Modelec1M3e −0.29 3 .80 −7.57 8 .33 1 .00

205 shape Modelec1M5a −0.20 0 .25 −0.69 0 .31 1 .02

206 shape Modelec3M3d 0 .34 5 .04 −8.72 11 .04 1 .00

207 shape Modelec3M8c 0 .76 0 .29 0 .19 1 .34 1 .02

208 shape Modeled2M1a −1.26 0 .61 −2.48 −0.13 1 .00

209 shape Modeled2M1d −1.13 0 .62 −2.41 0 .02 1 .00

210 shape Modeled3M1a 3 .91 3 .61 −0.38 13 .52 1 .00

211 shape Modelee1M5a −1.45 0 .68 −2.86 −0.23 1 .01

212 shape Modelee1M6b −0.92 1 .07 −3.16 0 .95 1 .00

213 shape Modelee1M6e 0 .30 0 .24 −0.17 0 .80 1 .02

214 shape Modelee2M2g 0 .57 0 .52 −0.46 1 .49 1 .00

215 shape Modelfa1M3b 0 .29 0 .25 −0.19 0 .79 1 .02

216 shape Modelfa2M3b −0.16 0 .23 −0.60 0 .29 1 .02

217 shape Modelfa3M3b 0 .35 0 .31 −0.28 0 .96 1 .01

218 shape Modelfa4M3b 0 .29 0 .39 −0.50 1 .03 1 .01
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219 shape ModelfbM8c −1.68 1 .22 −4.36 0 .42 1 .00

220 shape Modelga1M2b −1.58 0 .30 −2.20 −1.00 1 .01

221 shape Modelga1M7a −0.78 0 .25 −1.28 −0.29 1 .02

222 shape Modelgb1M1a −0.27 0 .44 −1.14 0 .56 1 .00

223 shape Modelgb1M1d 0 .26 0 .53 −0.85 1 .33 1 .00

224 shape Modelha1M3d −2.85 0 .68 −4.33 −1.66 1 .00

225 shape Modelha1M3e 3 .91 4 .30 −2.45 14 .30 1 .00

226 shape Modelha1M8a 0 .29 0 .69 −1.02 1 .76 1 .00

227 shape Modelha3M4c −0.49 0 .61 −1.85 0 .55 1 .00

228 shape Modelja1M3b −0.28 0 .78 −1.86 1 .26 1 .00

229 shape Modelja2M3b −1.06 0 .65 −2.45 0 .08 1 .00

230 zero InstMon2 −0.58 0 .14 −0.86 −0.32 1 .00

231 zero InstMon3 −0.93 0 .14 −1.21 −0.66 1 .00

232 zero InstMon4 −0.90 0 .13 −1.17 −0.64 1 .00

233 zero InstMon5 −1.25 0 .14 −1.52 −0.98 1 .00

234 zero InstMon6 −1.43 0 .14 −1.71 −1.17 1 .00

235 zero InstMon7 −2.14 0 .16 −2.46 −1.84 1 .00

236 zero InstMon8 −2.07 0 .19 −2.47 −1.73 1 .00

237 zero InstMon9 −1.68 0 .16 −2.01 −1.37 1 .00

238 zero InstMon10 −1.48 0 .14 −1.76 −1.20 1 .00

239 zero InstMon11 −1.26 0 .13 −1.53 −1.00 1 .00

240 zero InstMon12 −5.21 0 .99 −7.87 −3.98 1 .00

241 zero ProdMon2 −0.28 0 .21 −0.71 0 .12 1 .00

242 zero ProdMon3 −0.44 0 .23 −0.90 −0.02 1 .00

243 zero ProdMon4 −0.42 0 .21 −0.85 −0.02 1 .00

244 zero ProdMon5 −0.68 0 .24 −1.18 −0.24 1 .00

245 zero ProdMon6 −0.80 0 .25 −1.33 −0.34 1 .00

246 zero ProdMon7 −1.13 0 .27 −1.68 −0.65 1 .00

247 zero ProdMon8 −1.26 0 .41 −2.13 −0.55 1 .00

248 zero ProdMon9 −1.59 0 .44 −2.54 −0.83 1 .00

249 zero ProdMon10 −0.77 0 .29 −1.41 −0.23 1 .00

250 zero ProdMon11 −1.01 0 .36 −1.79 −0.40 1 .00

251 zero ProdMon12 −0.32 0 .27 −0.92 0 .18 1 .00
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(a) R̂ values (b) Ratio of effective sample size

Figure 6.22: Chain diagnostics

The model’s chain diagnostic plots are reasonable but Figure 6.22b shows that

there are a few inefficient samples with neff ratio smaller than 0.1. Some of the

posterior predictive plots are improved compared to other overdispersed models.

Figure 6.23c shows that the zero portion in posterior predictive distribution is

fairly centered around the zero portion in the data. This is achieved by mod-

eling the zeroes with another distribution. The hurdle model also can capture

maximum values in the data. This is also expected since the negative binomial

distribution is used for modeling positive integers in the data. Unfortunately,

Figure 6.23a shows that the mean distribution of samples is far from the true

mean .
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(a) Mean (b) Max (c) Zero portion

Figure 6.23: Posterior predictive check on mean, max, and zero portion

(a) Interval [0,100] (b) Interval [100,200]

(c) Interval [200,300] (d) Interval [300,400]

Figure 6.24: Posterior retrodictive check
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Figure 6.25: Posterior predictive distribution for each installation

month

Figure 6.26: Posterior predictive distribution for each production

month
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Figure 6.24a shows that the negative binomial hurdle model is better than

other models in terms of estimating the frequencies of small y values. But for

larger values, its estimations are similar to the negative binomial model. Posterior

predictive interval plots in Figures 6.25 and 6.26 shows that predictions are still

not very accurate.

Here, we presented the explicit form and of the selected model for estimating

the number of the installed refrigerator. We decided to use the negative binomial

hurdle model for estimating installation numbers. A detailed discussion on se-

lecting final models is made in Chapter 8. In the explicit form of the model, we

denote the grouping factor, namely refrigerator and compressor model, with m.

yminstalled | yminstalled > 0 ∼ NB (µm, α) ,

P (yminstalled = 0) = πm,

logit (πm) = γ0 + γm
1 InstMon2 + γm

2 InstMon3 + · · ·+ γm
11InstMon12

+ γm
12ProdMon2 + γm

13ProdMon3 + · · ·+ γm
22ProdMon12,

log (µm) = β0 + βm
1 InstMon2 + βm

2 InstMon3 + · · ·+ βm
11InstMon12

+ βm
12ProdMon2 + βm

13ProdMon3 + · · ·+ βm
22ProdMon12

+ log
(
nm
produced

)
,

log (α) = θ0 + θ1Model2 + . . . θ140Model141
γm
0

γm
1
...

γm
22

 ∼ N




γ̄0

γ̄1
...

γ̄22

 ,Σπ

 ,


βm
0

βm
1
...

βm
22

 ∼ N




β̄0

β̄1

...

β̄22

 ,Σµ

 ,
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Σπ =


σπ
0 0 0

0
. . . 0

0 0 σπ
22

Rπ


σπ
0 0 0

0
. . . 0

0 0 σπ
22

 , (6.6)

Σµ =


σµ
0 0 0

0
. . . 0

0 0 σµ
22

Rµ


σµ
0 0 0

0
. . . 0

0 0 σµ
22

 ,

θ0, θ1, . . . , θ140
iid∼ t7 (0, 10) ,

γ̄0, γ̄1, . . . , γ̄22
iid∼ t3 (0, 10) ,

β̄0, β̄1, . . . , β̄22
iid∼ t3 (0, 10) ,

σπ
0 , σ

π
1 , . . . , σ

π
22

iid∼ C+ (0, 3) ,

σµ
0 , σ

µ
1 , . . . , σ

µ
22

iid∼ C+ (0, 3) ,

Lπ ∼ LKJCorr (2) ,

Lµ ∼ LKJCorr (2) .
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Chapter 7

Hierarchical Bayesian Model for

Prediction of the Number of

In-service Refrigerator Failures

In this chapter, structure of the models and their diagnostic plots are presented.

The same models in Chapter 6 are used with little differences. The covariate age

was transformed into a binary variable that indicates whether the refrigerator

broke down in the first month after being sold. Then it was added to the models

as another covariate. As another difference, Poisson distribution is used in the

hurdle model.

7.1 Models

In this chapter, the structures of the models are presented. The general structure

of the models is shown with a DAG in Figure 7.1.
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Figure 7.1: DAG for hierarchical models

7.1.1 Poisson Model

In this model, we used the Poisson Likelihood function to model the number of

in-service refrigerator failures. The structure of the model can be defined as

ym ∼ Pois (µm) ,

µm = exp (Xmβm + log (nm)) ,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) .

(7.1)
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7.1.2 Negative Binomial Model

In this model, we used the Negative Binomial Likelihood function to model the

number of in-service refrigerator failures. The structure of the model can be

defined as
ym ∼ NB (µm, α) ,

µm = exp (Xmβm + log (nm)) ,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) ,

α ∼ Gamma (0.01, 0.01) .

(7.2)

7.1.3 Binomial Model

In this model, we used the binomial likelihood function to model the number of

in-service refrigerator failures. The structure of the model can be defined as

ym ∼ B (nm, µm) ,

logit (µm) = Xmβm,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) .

(7.3)
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7.1.4 Beta-Binomial Model

In this model, we used the beta-binomial likelihood function. The structure of

the beta-binomial model can be defined as

ym ∼ BetaBin (nm, µm, α) ,

logit (µm) = Xmβm,

βm ∼ N (β̄,Σ),

β̄ ∼ t3 (0, 10) ,

Σ = σLσT ,

L ∼ LKJCorr (2) ,

σ ∼ C+ (0, 3) ,

α ∼ Gamma (0.01, 0.01) .

(7.4)

7.1.5 Poisson Hurdle Model

In this model, we use two different likelihood functions to express positive and zero

counts separately. The first part of the model has a binomial likelihood function

that decides whether the response will be equal to zero or not. The second part

models the positive counts, and we used a truncated Poisson likelihood function

for this purpose. We select Poisson distribution because we believe that data is

not overdispersed. The structure of the model can be defined as

ym | ym > 0 ∼ Pois (µm) ,

P (ym = 0) = πm,

logit (πm) = Xmγm,

log (µm) = Xmβm + log (nm) ,

γm ∼ N (γ̄,Σπ),

βm ∼ N (β̄,Σµ),

γ̄ ∼ t3 (0, 10) , (7.5)

β̄ ∼ t3 (0, 10) ,
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Σπ = σπLπσ
T
π ,

Lπ ∼ LKJCorr (2) ,

σπ ∼ C+ (0, 3) ,

Σµ = σµLµσ
T
µ ,

Lµ ∼ LKJCorr (2) ,

σµ ∼ C+ (0, 3) .

7.2 Diagnostics

In this section, the summary and the diagnostics of models are presented. Vari-

ables that are used in model summaries are described in Table 2.1.

7.2.1 Poisson Model Diagnostics

Listing 7.1 shows the summary of the Poisson model. Besides installation month

and production month, the age turned into a binary covariate that describes

wheater failure occurs in the first month after it is sold and added to the model.

All the population effects are negative, meaning that refrigerators manufac-

tured and installed in January have the highest failure rate. On the other hand,

the population-level effects of some production months are insignificant, meaning

that they have the same failure rate as the reference level (January). Although

group-level effects are not very strong, some allow positive production effects. So,

some production months can increase the failure probability for some models. On

the other hand, the effect of age is always negative, meaning that refrigerators

with an age larger than one have a lower failure rate.
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Listing 7.1: Summary of Poisson model

2 Family : po i s son

3 Links : mu = log

4 Formula : Fa i l u r e ˜ 1 + AgeFailBinary + InstMon + ProdMon

5 + o f f s e t ( l og ( I n s t a l l e d ) )

6 + (1 + AgeFailBinary + InstMon

7 + ProdMon | Model )

8 Data : Fa i lu reTra in (Number o f ob s e rva t i on s : 16464)

9 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

10 t o t a l post−warmup draws = 4000

12 Group−Level E f f e c t s :

13 ˜Model (Number o f l e v e l s : 141)

14 Estimate Est . Error l−95% CI u−95% CI Rhat

15 sd ( I n t e r c ep t ) 0 .80 0 .08 0 .66 0 .95 1 .00

16 sd (Age>1) 0 .34 0 .04 0 .26 0 .43 1 .00

17 sd ( InstMon02 ) 0 .29 0 .11 0 .08 0 .51 1 .00

18 sd ( InstMon03 ) 0 .17 0 .09 0 .01 0 .37 1 .00

19 sd ( InstMon04 ) 0 .08 0 .07 0 .00 0 .24 1 .00

20 sd ( InstMon05 ) 0 .08 0 .05 0 .00 0 .20 1 .00

21 sd ( InstMon06 ) 0 .11 0 .07 0 .01 0 .25 1 .00

22 sd ( InstMon07 ) 0 .11 0 .06 0 .01 0 .24 1 .00

23 sd ( InstMon08 ) 0 .43 0 .05 0 .33 0 .54 1 .00

24 sd ( InstMon09 ) 0 .23 0 .06 0 .11 0 .37 1 .00

25 sd ( InstMon10 ) 0 .21 0 .09 0 .02 0 .37 1 .00

26 sd ( InstMon11 ) 0 .19 0 .10 0 .01 0 .41 1 .00

27 sd ( InstMon12 ) 0 .11 0 .08 0 .00 0 .30 1 .00

28 sd (ProdMon02) 0 .30 0 .07 0 .17 0 .46 1 .00

29 sd (ProdMon03) 0 .28 0 .08 0 .13 0 .44 1 .00

30 sd (ProdMon04) 0 .22 0 .08 0 .05 0 .38 1 .00

31 sd (ProdMon05) 0 .43 0 .07 0 .30 0 .57 1 .00

32 sd (ProdMon06) 0 .22 0 .10 0 .03 0 .41 1 .00

33 sd (ProdMon07) 0 .27 0 .08 0 .13 0 .44 1 .00

34 sd (ProdMon08) 0 .60 0 .10 0 .41 0 .81 1 .00
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35 sd (ProdMon09) 0 .49 0 .09 0 .32 0 .68 1 .00

36 sd (ProdMon10) 0 .17 0 .11 0 .01 0 .43 1 .00

37 sd (ProdMon11) 0 .29 0 .14 0 .03 0 .57 1 .00

38 sd (ProdMon12) 0 .21 0 .17 0 .01 0 .63 1 .00

40 Population−Level E f f e c t s :

41 Estimate Est . Error l−95% CI u−95% CI

42 I n t e r c ep t −4.38 0 .12 −4.60 −4.14 1 .00

43 Age>1 −0.87 0 .05 −0.97 −0.77 1 .00

44 InstMon02 −0.32 0 .11 −0.53 −0.11 1 .00

45 InstMon03 −0.66 0 .10 −0.85 −0.47 1 .00

46 InstMon04 −0.48 0 .09 −0.65 −0.31 1 .00

47 InstMon05 −0.54 0 .08 −0.69 −0.38 1 .00

48 InstMon06 −0.68 0 .08 −0.84 −0.51 1 .00

49 InstMon07 −0.88 0 .08 −1.03 −0.72 1 .00

50 InstMon08 −0.91 0 .09 −1.08 −0.72 1 .00

51 InstMon09 −0.57 0 .08 −0.73 −0.40 1 .00

52 InstMon10 −0.54 0 .09 −0.71 −0.37 1 .00

53 InstMon11 −0.57 0 .09 −0.75 −0.39 1 .00

54 InstMon12 −0.71 0 .09 −0.88 −0.53 1 .00

55 ProdMon02 −0.07 0 .08 −0.23 0 .10 1 .00

56 ProdMon03 −0.21 0 .08 −0.37 −0.05 1 .00

57 ProdMon04 −0.30 0 .08 −0.45 −0.16 1 .00

58 ProdMon05 −0.14 0 .09 −0.32 0 .03 1 .00

59 ProdMon06 −0.34 0 .08 −0.50 −0.19 1 .00

60 ProdMon07 −0.37 0 .08 −0.53 −0.21 1 .00

61 ProdMon08 −0.32 0 .11 −0.55 −0.11 1 .00

62 ProdMon09 −0.35 0 .11 −0.56 −0.15 1 .00

63 ProdMon10 −0.38 0 .09 −0.57 −0.20 1 .00

64 ProdMon11 −0.39 0 .11 −0.61 −0.19 1 .00

65 ProdMon12 −0.24 0 .13 −0.51 −0.01 1 .00
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The chain diagnostics of the Poisson model are nearly excellent. The R̂ values

suggest that chains are mixed. The samples are pretty efficient since there are

no parameters with a neff ratio lower than 0.1, and nearly all of them are larger

than 0.5.

The posterior predictive plots of the Poisson model are presented in Figure 7.3.

The mean posterior distribution is centered around the actual mean, but the

model underestimates the maximum value and overestimates the zero portion in

the data.

The posterior retrodictive plots are presented in Figure 7.4. For this problem,

the maximum value of the response equals 83, and there is only one observation

between y equals 40 and 83. Thus results are presented for two intervals of y,

[0, 5] and [35, 40]. Looking at Figure 7.4, one can deduce that model can not

make an accurate estimate when there is only one defective refrigerator. The

count of zeros in posterior retrodictive distribution is extremely higher than the

zero counts in the data suggesting that most of the observations with one failed

refrigerator are estimated as zero failure. Furthermore, Most of the values of y

are not in the 99% posterior retrodictive distribution.

(a) R̂ values (b) Ratio of effective sample size

Figure 7.2: Chain diagnostics
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(a) Mean (b) Max (c) Zero portion

Figure 7.3: Posterior predictive check on mean, max, and zero portion

(a) Interval [0,5] (b) Interval [5,40]

Figure 7.4: Posterior retrodictive check

Figure 7.5 shows the posterior prediction intervals for each installation month.

Some intervals are quite close to the actual y values, but there are many over-

and under-estimations in the prediction. Figure 7.6 shows the posterior predic-

tion intervals for each production month. A similar interpretation can make for

Figure 7.6.
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Figure 7.5: Posterior predictive distribution for each installation

month

Figure 7.6: Posterior predictive distribution for each production

month
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7.2.2 Negative Binomial Model Diagnostics

Listings 7.2 shows the summary of the negative binomial model. The estimated

model parameters are nearly the same as the estimated parameters of the Poisson

model. Furthermore, the inverse-overdispersion parameter is estimated as 152.56.

This means that data is not overdispersed, and negative binomial distribution acts

like Poisson distribution. The negative binomial model’s diagnostic plots are the

same as the Poisson model. Thus the same interpretations can be made.

Listing 7.2: Summary of negative binomial model

2 Family : negbinomial

3 Links : mu = log ; shape = i d en t i t y

4 Formula : Fa i l ed ˜ 1 + AgeFailBinary+ InstMon + ProdMon

5 + o f f s e t ( l og ( I n s t a l l e d ) )

6 + (1 + AgeFailBinary + InstMon

7 + ProdMon | Model )

8 Data : Fa i lu reTra in (Number o f ob s e rva t i on s : 16464)

9 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

10 t o t a l post−warmup draws = 4000

12 Group−Level E f f e c t s :

13 ˜Model (Number o f l e v e l s : 141)

14 Estimate Est . Error l−95% CI u−95% CI Rhat

15 sd ( I n t e r c ep t ) 0 .79 0 .08 0 .66 0 .95 1 .00

16 sd (Age>1) 0 .33 0 .04 0 .25 0 .42 1 .00

17 sd ( InstMon02 ) 0 .29 0 .11 0 .07 0 .50 1 .00

18 sd ( InstMon03 ) 0 .18 0 .09 0 .01 0 .37 1 .00

19 sd ( InstMon04 ) 0 .08 0 .06 0 .00 0 .24 1 .00

20 sd ( InstMon05 ) 0 .07 0 .05 0 .00 0 .19 1 .00

21 sd ( InstMon06 ) 0 .11 0 .07 0 .01 0 .25 1 .00

22 sd ( InstMon07 ) 0 .11 0 .06 0 .01 0 .23 1 .00

23 sd ( InstMon08 ) 0 .43 0 .06 0 .33 0 .54 1 .00

24 sd ( InstMon09 ) 0 .23 0 .07 0 .11 0 .37 1 .00

25 sd ( InstMon10 ) 0 .20 0 .09 0 .02 0 .37 1 .00
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26 sd ( InstMon11 ) 0 .18 0 .11 0 .01 0 .40 1 .00

27 sd ( InstMon12 ) 0 .11 0 .08 0 .01 0 .31 1 .00

28 sd (ProdMon02) 0 .30 0 .08 0 .16 0 .47 1 .00

29 sd (ProdMon03) 0 .28 0 .08 0 .12 0 .43 1 .00

30 sd (ProdMon04) 0 .21 0 .08 0 .04 0 .37 1 .00

31 sd (ProdMon05) 0 .42 0 .07 0 .30 0 .57 1 .00

32 sd (ProdMon06) 0 .21 0 .10 0 .02 0 .39 1 .00

33 sd (ProdMon07) 0 .27 0 .08 0 .11 0 .43 1 .00

34 sd (ProdMon08) 0 .60 0 .10 0 .41 0 .82 1 .00

35 sd (ProdMon09) 0 .48 0 .09 0 .32 0 .67 1 .00

36 sd (ProdMon10) 0 .18 0 .12 0 .01 0 .45 1 .00

37 sd (ProdMon11) 0 .29 0 .14 0 .04 0 .57 1 .00

38 sd (ProdMon12) 0 .21 0 .16 0 .01 0 .60 1 .00

40 Population−Level E f f e c t s :

41 Estimate Est . Error l−95% CI u−95% CI Rhat

42 I n t e r c ep t −4.37 0 .11 −4.59 −4.15 1 .00

43 Age>1 −0.87 0 .05 −0.97 −0.77 1 .00

44 InstMon02 −0.32 0 .11 −0.54 −0.11 1 .00

45 InstMon03 −0.66 0 .10 −0.84 −0.48 1 .00

46 InstMon04 −0.48 0 .09 −0.65 −0.31 1 .00

47 InstMon05 −0.54 0 .08 −0.69 −0.37 1 .00

48 InstMon06 −0.68 0 .08 −0.83 −0.52 1 .00

49 InstMon07 −0.89 0 .08 −1.05 −0.72 1 .00

50 InstMon08 −0.91 0 .09 −1.10 −0.73 1 .00

51 InstMon09 −0.57 0 .09 −0.73 −0.40 1 .00

52 InstMon10 −0.54 0 .09 −0.72 −0.37 1 .00

53 InstMon11 −0.57 0 .09 −0.75 −0.39 1 .00

54 InstMon12 −0.71 0 .09 −0.88 −0.53 1 .00

55 ProdMon02 −0.07 0 .08 −0.23 0 .10 1 .00

56 ProdMon03 −0.20 0 .08 −0.37 −0.05 1 .00

57 ProdMon04 −0.30 0 .08 −0.45 −0.15 1 .00

58 ProdMon05 −0.13 0 .09 −0.31 0 .04 1 .00

59 ProdMon06 −0.34 0 .08 −0.50 −0.19 1 .00

60 ProdMon07 −0.37 0 .08 −0.53 −0.21 1 .00
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61 ProdMon08 −0.32 0 .11 −0.55 −0.10 1 .00

62 ProdMon09 −0.35 0 .10 −0.56 −0.15 1 .00

63 ProdMon10 −0.38 0 .09 −0.57 −0.20 1 .00

64 ProdMon11 −0.39 0 .11 −0.61 −0.18 1 .00

65 ProdMon12 −0.24 0 .13 −0.50 −0.01 1 .00

67 Family S p e c i f i c Parameters :

68 Estimate Est . Error l−95% CI u−95% CI Rhat

69 shape 152 .56 80 .50 58 .33 369 .63 1 .00

(a) R̂ values (b) Ratio of effective sample size

Figure 7.7: Chain diagnostics
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(a) Mean (b) Max (c) Zero portion

Figure 7.8: Posterior predictive check on mean, max, and zero portion

(a) Interval [0,5] (b) Interval [5,40]

Figure 7.9: Posterior retrodictive check
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Figure 7.10: Posterior predictive distribution for each installation

month

Figure 7.11: Posterior predictive distribution for each production

month
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7.2.3 Binomial Model Diagnostics

Listings 7.3 shows the summary of the binomial model. Estimated model pa-

rameters are close to the parameters of Poisson and negative binomial models.

Furthermore, the binomial model’s diagnostics plots are the same as previous

diagnostic plots. This indicates that the three models are more or less the same,

and their accuracy results should be close.

Listing 7.3: Summary of binomial model

2 Family : b inomial

3 Links : mu = l o g i t

4 Formula : Fa i l ed | t r i a l s ( I n s t a l l e d ) ˜ 1 + AgeFailBinary + InstMon

5 + ProdMon + (1 + AgeFailBinary + InstMon

6 + ProdMon | Model )

7 Data : Fa i lu reTra in (Number o f ob s e rva t i on s : 16464)

8 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

9 t o t a l post−warmup draws = 4000

11 Group−Level E f f e c t s :

12 ˜Model (Number o f l e v e l s : 141)

13 Estimate Est . Error l−95% CI u−95% CI Rhat

14 sd ( I n t e r c ep t ) 0 .81 0 .08 0 .67 0 .97 1 .00

15 sd (Age>1) 0 .34 0 .04 0 .26 0 .42 1 .00

16 sd ( InstMon02 ) 0 .29 0 .11 0 .07 0 .52 1 .00

17 sd ( InstMon03 ) 0 .17 0 .10 0 .01 0 .37 1 .00

18 sd ( InstMon04 ) 0 .08 0 .06 0 .00 0 .23 1 .00

19 sd ( InstMon05 ) 0 .08 0 .05 0 .00 0 .20 1 .00

20 sd ( InstMon06 ) 0 .12 0 .07 0 .01 0 .27 1 .01

21 sd ( InstMon07 ) 0 .11 0 .06 0 .01 0 .24 1 .00

22 sd ( InstMon08 ) 0 .43 0 .06 0 .33 0 .55 1 .00

23 sd ( InstMon09 ) 0 .24 0 .06 0 .12 0 .36 1 .00

24 sd ( InstMon10 ) 0 .21 0 .09 0 .03 0 .39 1 .00

25 sd ( InstMon11 ) 0 .19 0 .10 0 .02 0 .40 1 .00

26 sd ( InstMon12 ) 0 .11 0 .08 0 .00 0 .29 1 .00
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27 sd (ProdMon02) 0 .30 0 .07 0 .17 0 .45 1 .00

28 sd (ProdMon03) 0 .28 0 .08 0 .12 0 .44 1 .00

29 sd (ProdMon04) 0 .21 0 .08 0 .04 0 .37 1 .00

30 sd (ProdMon05) 0 .43 0 .07 0 .30 0 .58 1 .00

31 sd (ProdMon06) 0 .22 0 .09 0 .03 0 .41 1 .00

32 sd (ProdMon07) 0 .28 0 .08 0 .13 0 .44 1 .00

33 sd (ProdMon08) 0 .60 0 .10 0 .41 0 .81 1 .00

34 sd (ProdMon09) 0 .49 0 .09 0 .32 0 .69 1 .00

35 sd (ProdMon10) 0 .18 0 .12 0 .01 0 .44 1 .00

36 sd (ProdMon11) 0 .29 0 .14 0 .03 0 .57 1 .00

37 sd (ProdMon12) 0 .21 0 .16 0 .01 0 .62 1 .00

39 Population−Level E f f e c t s :

40 Estimate Est . Error l−95% CI u−95% CI Rhat

41 I n t e r c ep t −4.36 0 .12 −4.58 −4.13 1 .01

42 Age>1 −0.88 0 .05 −0.98 −0.78 1 .00

43 InstMon02 −0.33 0 .11 −0.55 −0.11 1 .00

44 InstMon03 −0.67 0 .10 −0.85 −0.48 1 .00

45 InstMon04 −0.49 0 .09 −0.66 −0.31 1 .00

46 InstMon05 −0.54 0 .08 −0.70 −0.39 1 .00

47 InstMon06 −0.68 0 .08 −0.84 −0.53 1 .00

48 InstMon07 −0.89 0 .08 −1.06 −0.74 1 .00

49 InstMon08 −0.92 0 .09 −1.10 −0.74 1 .00

50 InstMon09 −0.57 0 .09 −0.75 −0.41 1 .00

51 InstMon10 −0.55 0 .09 −0.73 −0.38 1 .00

52 InstMon11 −0.58 0 .09 −0.76 −0.40 1 .00

53 InstMon12 −0.71 0 .09 −0.89 −0.54 1 .00

54 ProdMon02 −0.07 0 .08 −0.24 0 .09 1 .00

55 ProdMon03 −0.21 0 .08 −0.36 −0.05 1 .00

56 ProdMon04 −0.31 0 .08 −0.46 −0.16 1 .00

57 ProdMon05 −0.14 0 .09 −0.31 0 .04 1 .00

58 ProdMon06 −0.34 0 .08 −0.51 −0.19 1 .00

59 ProdMon07 −0.37 0 .08 −0.53 −0.22 1 .00

60 ProdMon08 −0.32 0 .12 −0.56 −0.10 1 .00

61 ProdMon09 −0.36 0 .10 −0.57 −0.16 1 .00
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62 ProdMon10 −0.38 0 .10 −0.58 −0.20 1 .00

63 ProdMon11 −0.39 0 .11 −0.60 −0.18 1 .00

64 ProdMon12 −0.25 0 .13 −0.51 −0.01 1 .00

(a) R̂ values (b) Ratio of effective sample size

Figure 7.12: Chain diagnostics

(a) Mean (b) Max (c) Zero portion

Figure 7.13: Posterior predictive check on mean, max, and zero portion
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(a) Interval [0,5] (b) Interval [5,40]

Figure 7.14: Posterior retrodictive check

Figure 7.15: Posterior predictive distribution for each installation

month
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Figure 7.16: Posterior predictive distribution for each production

month

As discussed before, the binomial distribution is asymptotically equal to the

Poisson distribution; thus, obtaining similar diagnostics plots might be expected.

On the other hand, obtaining similar results from the Poisson and negative bino-

mial model indicates the data is not overdispersed.The negative binomial distri-

bution acts like the Poisson distribution when the dispersion parameter is close

to zero; this is a suitable explanation for our case since the mean of the posterior

distribution of the dispersion parameter equals 0.006.
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7.2.4 Beta-Binomial Model Diagnostics

Listings 7.4 shows the summary of beta-binomial model. Estimated parameters

close to other models’ parameters. Inverse-overdispersion parameter is denoted

as phi in the Listings 7.4, and its estimation is quite high.

Listing 7.4: Summary of beta-binomial model

2 Family : be ta b inomia l

3 Links : mu = l o g i t ; phi = i d e n t i t y

4 Formula : Fa i l ed | t r i a l s ( I n s t a l l e d ) ˜ 1 + AgeFailBinary

5 + InstMon + ProdMon + (1 + AgeFailBinary

6 + InstMon + ProdMon | Model )

7 Data : Fa i lu reTra in (Number o f ob s e rva t i on s : 16464)

8 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

9 t o t a l post−warmup draws = 4000

11 Group−Level E f f e c t s :

12 ˜Model (Number o f l e v e l s : 141)

13 Estimate Est . Error l−95% CI u−95% CI Rhat

14 sd ( I n t e r c ep t ) 0 .79 0 .07 0 .66 0 .95 1 .00

15 sd (Age>1) 0 .31 0 .04 0 .23 0 .40 1 .00

16 sd ( InstMon02 ) 0 .28 0 .11 0 .05 0 .51 1 .00

17 sd ( InstMon03 ) 0 .16 0 .09 0 .01 0 .36 1 .00

18 sd ( InstMon04 ) 0 .08 0 .06 0 .00 0 .23 1 .00

19 sd ( InstMon05 ) 0 .07 0 .05 0 .00 0 .19 1 .00

20 sd ( InstMon06 ) 0 .10 0 .06 0 .00 0 .23 1 .00

21 sd ( InstMon07 ) 0 .09 0 .06 0 .01 0 .22 1 .00

22 sd ( InstMon08 ) 0 .40 0 .06 0 .30 0 .52 1 .00

23 sd ( InstMon09 ) 0 .22 0 .07 0 .08 0 .35 1 .00

24 sd ( InstMon10 ) 0 .18 0 .09 0 .01 0 .35 1 .00

25 sd ( InstMon11 ) 0 .16 0 .10 0 .01 0 .37 1 .00

26 sd ( InstMon12 ) 0 .10 0 .08 0 .00 0 .29 1 .00

27 sd (ProdMon02) 0 .29 0 .07 0 .17 0 .45 1 .00

28 sd (ProdMon03) 0 .26 0 .08 0 .12 0 .41 1 .00
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29 sd (ProdMon04) 0 .16 0 .09 0 .01 0 .34 1 .00

30 sd (ProdMon05) 0 .41 0 .07 0 .29 0 .55 1 .00

31 sd (ProdMon06) 0 .20 0 .10 0 .02 0 .39 1 .00

32 sd (ProdMon07) 0 .25 0 .08 0 .09 0 .41 1 .00

33 sd (ProdMon08) 0 .58 0 .10 0 .39 0 .80 1 .00

34 sd (ProdMon09) 0 .47 0 .09 0 .30 0 .66 1 .00

35 sd (ProdMon10) 0 .16 0 .11 0 .01 0 .42 1 .01

36 sd (ProdMon11) 0 .27 0 .13 0 .03 0 .54 1 .00

37 sd (ProdMon12) 0 .20 0 .16 0 .01 0 .58 1 .00

39 Population−Level E f f e c t s :

40 Estimate Est . Error l−95% CI u−95% CI Rhat

41 I n t e r c ep t −4.38 0 .12 −4.61 −4.15 1 .00

42 Age>1 −0.85 0 .05 −0.95 −0.75 1 .00

43 InstMon02 −0.31 0 .11 −0.53 −0.10 1 .00

44 InstMon03 −0.65 0 .10 −0.83 −0.46 1 .00

45 InstMon04 −0.47 0 .09 −0.65 −0.30 1 .00

46 InstMon05 −0.52 0 .08 −0.69 −0.36 1 .00

47 InstMon06 −0.66 0 .08 −0.82 −0.50 1 .00

48 InstMon07 −0.86 0 .08 −1.02 −0.71 1 .00

49 InstMon08 −0.88 0 .09 −1.06 −0.71 1 .00

50 InstMon09 −0.56 0 .08 −0.73 −0.39 1 .00

51 InstMon10 −0.53 0 .09 −0.70 −0.36 1 .00

52 InstMon11 −0.56 0 .09 −0.74 −0.38 1 .00

53 InstMon12 −0.69 0 .09 −0.87 −0.51 1 .00

54 ProdMon02 −0.08 0 .08 −0.24 0 .08 1 .00

55 ProdMon03 −0.19 0 .08 −0.34 −0.05 1 .00

56 ProdMon04 −0.31 0 .07 −0.46 −0.16 1 .00

57 ProdMon05 −0.13 0 .09 −0.30 0 .05 1 .00

58 ProdMon06 −0.33 0 .08 −0.49 −0.17 1 .00

59 ProdMon07 −0.35 0 .08 −0.50 −0.20 1 .00

60 ProdMon08 −0.30 0 .11 −0.52 −0.09 1 .00

61 ProdMon09 −0.34 0 .10 −0.54 −0.14 1 .00

62 ProdMon10 −0.37 0 .09 −0.56 −0.19 1 .00

63 ProdMon11 −0.38 0 .11 −0.59 −0.18 1 .00
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64 ProdMon12 −0.25 0 .12 −0.50 −0.01 1 .00

66 Family S p e c i f i c Parameters :

67 Estimate Est . Error l−95% CI u−95% CI Rhat Bulk ESS Tail ESS

68 phi 7033 .49 581 .60 5986.41 8251.19 1 .00

(a) R̂ values (b) Ratio of effective sample size

Figure 7.17: Chain diagnostics

(a) Mean (b) Max (c) Zero portion

Figure 7.18: Posterior predictive check on mean, max, and zero portion
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(a) Interval [0,5] (b) Interval [5,40]

Figure 7.19: Posterior retrodictive check

Figure 7.20: Posterior predictive distribution for each installation

month
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Figure 7.21: Posterior predictive distribution for each production

month

Chain diagnostic of the beta-binomial model suggests that both mixing and

effectiveness of the samples are pretty good. Unlike other models, the beta-

binomial model overestimates the mean of the data. Figure 7.19b shows that

the posterior retrodictive distribution of the model is slightly worse than other

models’. Both Figures 7.20 and 7.21 indicates that there are many inaccurate

predictions.

7.2.5 Poisson Hurdle Model Diagnostics

Listing 7.5 shows the summary of the Poisson hurdle model. By looking at

the population-level effects, one can deduce that refrigerators older than one

month and installed in December have a higher zero failure probability. Group-

level effect of the intercept of the zero failure probability is strong. This means

that refrigerator models influence the age effect and installation month effect of
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January.

Listing 7.5: Summary of Poisson hurdle model

2 Family : ˜ hu rd l e po i s s on

3 Links : mu = log ; ze ro = l o g i t

4 Formula : Fa i l ed ˜ 1 + AgeFailBinary + o f f s e t ( l og ( I n s t a l l e d ) )

5 + InstMon + ProdMon + (1 + InstMon

6 + AgeFailBinary + ProdMon | Model )

7 ZeroFa i l ed ˜ 1 + AgeFailBinary + InstMon

8 + (1 + AgeFailBinary + InstMon | Model )

9 Data : Fa i lu reTra in (Number o f ob s e rva t i on s : 16464)

10 Draws : 4 chains , each with i t e r = 1000 ; warmup = 0 ; th in = 1 ;

11 t o t a l post−warmup draws = 4000

13 Group−Level E f f e c t s :

14 ˜Model (Number o f l e v e l s : 141)

15 Estimate Est . Error l−95% CI u−95% CI Rhat

16 sd ( I n t e r c ep t ) 0 .71 0 .09 0 .55 0 .89 1 .00

17 sd ( InstMon02 ) 0 .52 0 .40 0 .02 1 .49 1 .00

18 sd ( InstMon03 ) 0 .21 0 .17 0 .01 0 .61 1 .00

19 sd ( InstMon04 ) 0 .21 0 .15 0 .01 0 .56 1 .00

20 sd ( InstMon05 ) 0 .13 0 .10 0 .00 0 .36 1 .00

21 sd ( InstMon06 ) 0 .34 0 .14 0 .06 0 .63 1 .00

22 sd ( InstMon07 ) 0 .20 0 .11 0 .02 0 .44 1 .00

23 sd ( InstMon08 ) 0 .40 0 .10 0 .21 0 .61 1 .00

24 sd ( InstMon09 ) 0 .12 0 .10 0 .00 0 .37 1 .00

25 sd ( InstMon10 ) 0 .42 0 .19 0 .06 0 .82 1 .00

26 sd ( InstMon11 ) 0 .31 0 .20 0 .02 0 .77 1 .00

27 sd ( InstMon12 ) 0 .24 0 .19 0 .01 0 .71 1 .00

28 sd (Age>1) 0 .70 0 .11 0 .51 0 .93 1 .00

29 sd (ProdMon02) 0 .50 0 .18 0 .16 0 .88 1 .00

30 sd (ProdMon03) 0 .28 0 .16 0 .02 0 .62 1 .00

31 sd (ProdMon04) 0 .39 0 .13 0 .15 0 .67 1 .00

32 sd (ProdMon05) 0 .63 0 .13 0 .40 0 .92 1 .00

33 sd (ProdMon06) 0 .24 0 .15 0 .01 0 .58 1 .00
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34 sd (ProdMon07) 0 .36 0 .13 0 .13 0 .63 1 .00

35 sd (ProdMon08) 0 .73 0 .20 0 .37 1 .15 1 .00

36 sd (ProdMon09) 0 .32 0 .18 0 .02 0 .70 1 .00

37 sd (ProdMon10) 0 .22 0 .19 0 .01 0 .70 1 .00

38 sd (ProdMon11) 0 .26 0 .19 0 .01 0 .72 1 .00

39 sd (ProdMon12) 0 .77 0 .64 0 .03 2 .39 1 .00

40 sd ( z e r o I n t e r c e p t ) 1 .77 0 .16 1 .49 2 .10 1 .00

41 sd ( zero Age>1) 0 .36 0 .12 0 .09 0 .59 1 .01

42 sd ( zero InstMon02 ) 0 .39 0 .19 0 .03 0 .76 1 .00

43 sd ( zero InstMon03 ) 0 .73 0 .17 0 .42 1 .07 1 .00

44 sd ( zero InstMon04 ) 0 .19 0 .13 0 .01 0 .49 1 .00

45 sd ( zero InstMon05 ) 0 .28 0 .15 0 .02 0 .58 1 .00

46 sd ( zero InstMon06 ) 0 .39 0 .14 0 .10 0 .67 1 .00

47 sd ( zero InstMon07 ) 0 .42 0 .13 0 .17 0 .68 1 .00

48 sd ( zero InstMon08 ) 0 .63 0 .11 0 .43 0 .86 1 .00

49 sd ( zero InstMon09 ) 0 .62 0 .11 0 .41 0 .85 1 .00

50 sd ( zero InstMon10 ) 0 .51 0 .13 0 .26 0 .76 1 .00

51 sd ( zero InstMon11 ) 0 .32 0 .16 0 .03 0 .63 1 .00

52 sd ( zero InstMon12 ) 0 .85 0 .16 0 .56 1 .17 1 .01

54 Population−Level E f f e c t s :

55 Estimate Est . Error l−95% CI u−95% CI Rhat

56 I n t e r c ep t −5.82 0 .24 −6.31 −5.38 1 .00

57 z e r o I n t e r c e p t 0 .20 0 .20 −0.19 0 .59 1 .00

58 Age>1 −1.71 0 .12 −1.94 −1.48 1 .00

59 InstMon02 −0.69 0 .37 −1.53 −0.04 1 .00

60 InstMon03 −0.53 0 .25 −1.03 −0.03 1 .00

61 InstMon04 −0.32 0 .24 −0.77 0 .15 1 .00

62 InstMon05 −0.08 0 .21 −0.48 0 .35 1 .00

63 InstMon06 −0.30 0 .22 −0.71 0 .15 1 .00

64 InstMon07 −0.38 0 .20 −0.78 0 .02 1 .00

65 InstMon08 −0.51 0 .22 −0.90 −0.07 1 .00

66 InstMon09 −0.04 0 .21 −0.42 0 .39 1 .00

67 InstMon10 −0.37 0 .24 −0.85 0 .11 1 .00

68 InstMon11 −0.58 0 .24 −1.05 −0.10 1 .00
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69 InstMon12 −0.40 0 .25 −0.91 0 .08 1 .00

70 ProdMon02 0 .13 0 .19 −0.25 0 .49 1 .00

71 ProdMon03 −0.16 0 .17 −0.52 0 .16 1 .00

72 ProdMon04 −0.16 0 .17 −0.51 0 .18 1 .00

73 ProdMon05 0 .03 0 .19 −0.33 0 .39 1 .00

74 ProdMon06 −0.03 0 .17 −0.38 0 .29 1 .00

75 ProdMon07 −0.09 0 .17 −0.42 0 .24 1 .00

76 ProdMon08 −0.26 0 .22 −0.71 0 .17 1 .00

77 ProdMon09 −0.22 0 .19 −0.59 0 .15 1 .00

78 ProdMon10 −0.09 0 .21 −0.51 0 .30 1 .00

79 ProdMon11 −0.20 0 .22 −0.64 0 .24 1 .00

80 ProdMon12 −0.62 0 .59 −2.13 0 .23 1 .00

81 zero Age>1 2 .16 0 .09 1 .98 2 .34 1 .00

82 zero InstMon02 0 .22 0 .16 −0.09 0 .56 1 .00

83 zero InstMon03 0 .11 0 .19 −0.26 0 .49 1 .00

84 zero InstMon04 −0.32 0 .13 −0.57 −0.07 1 .00

85 zero InstMon05 −0.59 0 .13 −0.85 −0.34 1 .00

86 zero InstMon06 −0.84 0 .13 −1.09 −0.57 1 .00

87 zero InstMon07 −0.98 0 .13 −1.23 −0.72 1 .00

88 zero InstMon08 −1.07 0 .14 −1.35 −0.78 1 .00

89 zero InstMon09 −0.51 0 .15 −0.81 −0.21 1 .00

90 zero InstMon10 −0.06 0 .15 −0.34 0 .23 1 .00

91 zero InstMon11 0 .46 0 .14 0 .19 0 .75 1 .00

92 zero InstMon12 1 .54 0 .21 1 .14 1 .95 1 .00

As expected, the zero portion of the posterior predictive distribution of the hurdle

model is perfect, but obviously, it affects the mean of the response. Hence, the

plot in Figure 7.23a is worse compared to its equivalents in other models. Also,

the plot in Figure 7.23b indicates a red flag since there are some unusually large

values.

However, the retrodictive plots in Figure 7.24 portray a better picture in terms

of estimating frequencies of most of the values of y. The plot in Figure 7.24a

suggests that the model can estimate the frequency of ones more accurately.
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Furthermore, the amount of overestimation for the larger values of y decreased

substantially.

(a) R̂ values (b) Ratio of effective sample size

Figure 7.22: Chain diagnostics

Figures 7.25 and 7.26 indicate that some of the observations have a unreason-

ably large 95% posterior predictive interval. The estimations for those observa-

tions are unstable and distort the plot in Figure 7.23b.

(a) Mean (b) Max (c) Zero portion

Figure 7.23: Posterior predictive check on mean, max, and zero portion
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(a) Interval [0,5] (b) Interval [5,40]

Figure 7.24: Posterior retrodictive check

Figure 7.25: Posterior predictive distribution for each installation

month
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Figure 7.26: Posterior predictive distribution for each production

month

Here we presented the explicit form of the selected model for the prediction

of the number of in-service refrigerator failures. We decided to use the binomial

model for estimating failure numbers. A detailed discussion on selecting final

models is made in Chapter 8. In the explicit form of the model, we denote the

grouping factor, namely the refrigerator and compressor model, with m. The

explicit form of the model is presented in Equation 7.6

ymfailed | ymfailed > 0 ∼ Binom (nm
installed, µ

m) ,

logit (µm) = β0 + βm
1 InstMon2 + βm

2 InstMon3 + · · ·+ βm
11InstMon12

+ βm
12ProdMon2 + βm

13ProdMon3 + · · ·+ βm
22ProdMon12

+ βm
23AgeFailBinary,

βm
0

βm
1
...

βm
23

 ∼ N




β̄0

β̄1

...

β̄23

 ,Σ

 ,
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Σ =


σ0 0 0

0
. . . 0

0 0 σ23

L


σ0 0 0

0
. . . 0

0 0 σ23

 , (7.6)

β̄0, β̄1, . . . , β̄22
iid∼ t3 (0, 10) ,

σ0, σ, . . . , σ23,
iid∼ C+ (0, 3) ,

L ∼ LKJCorr (2) .
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Chapter 8

Model Comparisons

In this chapter, the results of the models and their comparisons are presented.

The proposed hierarchical models are compared with their equivalents in the

frequentist approach. Since hierarchical models use the refrigerator model as the

grouping factor, interaction effects of refrigerator models with other covariates are

added to these models. To understand whether or not the hierarchical structure

is needed, we also fitted non-hierarchical Bayesian models and their frequentist

approach versions. These models do not include interaction effects, and the main

effect of the refrigerator model is added to these models. Data sets are divided into

training and test datasets of equal sizes, and models are trained and tested using

them. The comparison is performed using the estimated loo, WAIC, root mean

squared error (RMSE), normalized RMSE (normalized by average and normalized

by standard deviation), and mean absolute error (MAE).
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8.1 Comparisons of Installation Models

This section discusses the accuracy results of models that are fitted to predict

the number of installed refrigerators. Table 8.1 presents the estimated loo and

WAIC values of the Bayesian models. Most of the model’s portion of the prob-

lematic observations is less than 0.5%. These observations have an estimated

shape parameter of Pareto distribution larger than 0.7. The percentage of alarm-

ing observations for hierarchical Poisson and binomial models is larger than 20%.

Similarly, the percentage of alarming observations for non-hierarchical Poisson

and binomial models is approximately 4.5%. Thus their estimated loo and WAIC

scores are not reliable. For other models, these scores are reliable; thus, a com-

parison is possible for only them. Generally, hierarchical models perform better

according to these metrics. One can deduce that negative binomial and beta-

binomial models yield comparable predictive accuracies. The hierarchical nega-

tive binomial hurdle model performs best. However, its non-hierarchical version

gives the poorest result among all. This indicates that data gets too sparse when

all the covariates are included and zeros are modeled separately.

Table 8.1: Bayesian Comparison Statistics for Models of Number of Installations

Model Loo WAIC

Hierarchical Poisson 542568 601702

Hierarchical Negative Binomial 119450 119418

Hierarchical Binomial 618246 697307

Hierarchical Beta-Binomial 119544 119520

Hierarchical Hurdle 118542 118474

Non-Hierarchical Poisson 826121 845366

Non-Hierarchical Negative Binomial 120138 120133

Non-Hierarchical Binomial 955340 980483

Non-Hierarchical Beta-Binomial 120338 120336

Non-Hierarchical Hurdle 122783 122777
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For obtaining a much-stabilized comparison, K-fold cross-validation should be

used. However, that kind of intensive application sometimes is infeasible. Con-

sidering the run time of fitting a Bayesian model, it is not possible for us to

compare models using K-fold CV. Hence we could only calculate the training

and test accuracies of the models. Table 8.2 shows the training MAE, RMSE,

ARMSE (normalized with average), and SRMSE (normalized with standard de-

viation) values of models. The results suggest that the main effect models fitted

using MLE are similar to non-hierarchical Bayesian models. Comparing these

results with test accuracies in Table 8.3, one can deduce that main effect mod-

els are not overfitting. Furthermore, this also indicates that for the main effect

models, data is informative enough and dominates the prior information; thus,

using MCMC doesn’t have an advantage over the MLE. On the contrary, the

Poisson and negative binomial models with interaction effect and fitted by MLE

are clearly overfitting. Although their training errors are good enough, test errors

are unreasonably large. This observation is not valid for the interaction effect bi-

nomial model since its test results are acceptable. There is no solution for the

negative binomial hurdle model with interaction effects due to sparsity in the

data; hence it’s not included in Table 8.2 and 8.3.

Most test accuracies are comparable, with few exceptions. Extremely high

test errors for interaction models indicate using a hierarchical structure is highly

beneficial when the interaction effects are needed. In other words, no-pooling in-

teraction effect models are overfitting when the data is sparse, but partial-pooling

models work well. On the other hand, hierarchical models can not outperform the

main effects models. Although hierarchical negative binomial and beta-binomial

models have the lowest MAE, main effect models perform better in squared error

based metrics. One can deduce that the main effect models are slightly better in

estimating larger count values.
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Table 8.2: Comparison Statistics on Train Data

(NB=negative binomial, H=hierarchical, BB=beta-binomial, NH=non-hierarchical)

Model MAE RMSE ARMSE SRMSE

Poisson (MLE) 49.73 176.02 2.01 0.55

NB (MLE) 53.14 216.83 2.48 0.68

Binomial (MLE) 49.66 176.12 2.02 0.55

Hurdle (MLE) 53.42 218.10 2.50 0.68

NH Poisson (MCMC) 49.73 176.02 2.01 0.55

NH NB (MCMC) 53.19 216.76 2.48 0.67

NH Binomial (MCMC) 49.66 176.11 2.01 0.55

NH BB (MCMC) 52.96 213.76 2.44 0.66

NH Hurdle (MCMC) 53.99 223.51 2.56 0.69

Poisson w/Interactions (MLE) 34.51 108.07 1.21 0.33

NB w/Interactions (MLE) 43.01 184.22 2.11 0.57

Binomial w/Interactions (MLE) 34.53 105.44 1.21 0.33

H Poisson (MCMC) 34.57 106.11 1.21 0.33

H NB (MCMC) 46.73 185.24 2.12 0.57

H Binomial (MCMC) 34.48 105.28 1.20 0.32

H BB (MCMC) 47.50 186.05 2.13 0.57

H Hurdle (MCMC) 48.59 194.78 2.23 0.60

The choice of the model depends on the practitioner’s expectations from the

prediction. For modeling smaller counts, hierarchical negative binomial, beta-

binomial, or hurdle models are preferable. For the models of the number of

installations, the prediction accuracy of smaller counts is essential; zeros are

especially vital since they automatically reduce the failure probability of a refrig-

erator to zero. Hence using the hurdle model might create an advantage in our

case. Moreover, hierarchical models are more robust when data includes samples

with few data points. Thus they will provide more stable predictions when new

refrigerator models with a few observations are introduced.
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Table 8.3: Comparison Statistics on Test Data

(NB=negative binomial, H=hierarchical, BB=beta-binomial, NH=non-hierarchical)

Model MAE RMSE ARMSE SRMSE

Poisson (MLE) 52.55 209.92 2.33 0.57

NB (MLE) 55.25 252.18 2.80 0.68

Binomial (MLE) 52.51 209.23 2.32 0.56

Hurdle (MLE) 55.51 253.34 2.82 0.68

NH Poisson (MCMC) 52.55 209.93 2.33 0.57

NH NB (MCMC) 55.29 252.08 2.80 0.68

NH Binomial (MCMC) 52.50 209.22 2.32 0.56

NH BB (MCMC) 54.61 250.39 2.78 0.68

NH Hurdle (MCMC) 56.26 260.73 2.89 0.71

Poisson w/Interactions (MLE) 2 · 106 2 · 108 2 · 106 6 · 105

NB w/Interactions (MLE) 4 · 1016 4 · 1018 4 · 1016 1 · 1016

Binomial w/Interactions (MLE) 56.59 225.29 2.50 0.61

H Poisson (MCMC) 56.89 234.79 2.61 0.63

H NB (MCMC) 51.17 219.87 2.44 0.60

H Binomial (MCMC) 55.67 221.08 2.45 0.60

H BB (MCMC) 52.03 222.34 2.47 0.60

H Hurdle (MCMC) 52.62 227.20 2.53 0.61
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8.2 Comparisons of In-service Failure Models

This section discusses the accuracies of the models that are fitted for predict-

ing the number of in-service refrigerator failures. The sampling of the non-

hierarchical hurdle model was problematic and thus not included in the com-

parison. Additionally, there was no solution for interaction models; thus they

were also discarded.

Table 8.4: Bayesian Comparison Statistics for Models of Number of Failures

Model Loo WAIC

Hierarchical Poisson 19950 19930

Hierarchical Negative Binomial 19953 19930

Hierarchical Binomial 19935 19912

Hierarchical Beta-Binomial 20072 20056

Hierarchical Hurdle 21643 21603

Non-Hierarchical Poisson 20750 20742

Non-Hierarchical Negative Binomial 20633 20616

Non-Hierarchical Binomial 20740 20728

Non-Hierarchical Beta-Binomial 20658 20673

The estimated loo and WAIC values of Bayesian models are presented in Ta-

ble 8.4. The portion of problematic observations is less than 0.2% for all models.

Thus models can be compared using estimated loo and WAIC. The predictive

accuracies show that hierarchical models provide a better fit compared to their

non-hierarchical versions. This might be expected since failure data is much more

sparse than installation data. The percentage of zeros in the data is 65%. So,

using the strength of hierarchical structure increases the prediction accuracy. The

reader might notice that predictive accuracies of Poisson, negative binomial, and

binomial models are nearly identical. This result supports the previous interpre-

tation of diagnostic plots of these three models.
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Table 8.5: Comparison Statistics on Train Data

(NB=negative binomial, H=hierarchical, BB=beta-binomial, NH=non-hierarchical)

Model MAE RMSE ARMSE SRMSE

Poisson (MLE) 0.34 0.89 1.91 0.76

NB (MLE) 0.35 0.92 1.96 0.78

Binomial (MLE) 0.34 0.89 1.91 0.76

NH Poisson (MCMC) 0.34 0.89 1.91 0.76

NH NB (MCMC) 0.35 0.92 1.96 0.78

NH Binomial (MCMC) 0.34 0.89 1.91 0.76

NH BB (MCMC) 0.36 0.94 2.01 0.80

H Poisson (MCMC) 0.29 0.66 1.41 0.56

H NB (MCMC) 0.29 0.68 1.45 0.58

H Binomial (MCMC) 0.29 0.66 1.41 0.56

H BB (MCMC) 0.31 0.71 1.52 0.61

H Hurdle (MCMC) 0.36 0.59 1.26 0.51

Both train and test accuracy results suggest that models that hierarchical

models perform better than the models that utilize the MLE. This result indicates

that Bayesian models can be preferable when the data are heterogeneous. The

train accuracy results in Table 8.5 show that hierarchical models learn better

than non-hierarchical ones. Also, test accuracies in Table 8.6 suggest that their

predictive accuracy is better. The best MAE score is obtained by a hierarchical

binomial model but squared error based metrics points to the hierarchical Poisson

hurdle model. On the contrary, both estimated Bayesian compare metrics in

Table 8.4 and test accuracies in Table 8.6 indicate that other hierarchical models

predict better than the hurdle model. These results also designate the hurdle

model is slightly overfitting.
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Table 8.6: Comparison Statistics on Test Data

(NB=negative binomial, H=hierarchical, BB=beta-binomial, NH=non-hierarchical)

Model MAE RMSE ARMSE SRMSE

Poisson (MLE) 0.34 0.99 2.07 0.73

NB (MLE) 0.35 1.01 2.11 0.75

Binomial (MLE) 0.34 0.99 2.07 0.73

NH Poisson (MCMC) 0.34 0.99 2.07 0.73

NH NB (MCMC) 0.35 1.01 2.12 0.75

NH Binomial (MCMC) 0.34 0.99 2.07 0.73

NH BB (MCMC) 0.36 1.03 2.16 0.77

H Poisson (MCMC) 0.33 0.83 1.75 0.62

H NB (MCMC) 0.33 0.84 1.76 0.62

H Binomial (MCMC) 0.33 0.83 1.75 0.62

H BB (MCMC) 0.34 0.86 1.81 0.64

H Hurdle (MCMC) 0.40 1.20 2.32 0.82

The test accuracies indicate that all the hierarchical models except the hurdle

model are almost identical. Although choosing any of these models does not make

a difference in the predictive accuracy, we prefer to use the binomial model to

predict the number of defective refrigerators since obtaining hazard probabilities

is more interpretable in defective analysis. Furthermore, a more complex and

suitable model can be obtained by decomposing hazard probabilities according

to age covariate.
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Chapter 9

Conclusion

This study provides a comparison of Bayesian models that are fitted to infor-

mative and less informative data and shows how the suitable structure depends

on them. In the first part of the problem, we built both hierarchical and non-

hierarchical Bayesian models for predicting the installation numbers. The data

set for this part of the problem is informative enough, and the hierarchical struc-

ture does not make much difference. Comparing these models is challenging since

the most stable Bayesian comparison methods are unreliable for the models that

yield the best test accuracy. However, we prioritize increasing the predictive ac-

curacy of zero counts since they are more impactful for the second part of the

problem. Hence we recommend using the negative binomial hurdle model to

predict the installation numbers. Furthermore, the second part of the problem

emphasizes the value of the hierarchical structure.

Using the same structure for both parts portrays the consequences of the in-

formation amount in the data. The second dataset is considerably more sparse

compared to the first one. This difference reflects in the models’ performances.

Besides the increased performance of the hierarchical models, we observed that

their equivalence in the frequentist approach could not even find a solution. This

result makes Bayesian models more preferable for practitioners. All the hier-

archical models in the second part perform similarly except the hurdle model.
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The hurdle model appeared to be unnecessarily complex for the second dataset.

Although the similarity of the proposed model, we choose to use a hierarchical

binomial model for predicting the defective numbers. We believe that using haz-

ard probabilities is more interpretable for the problem, and their representation

can be improved in future work.

In the training phase of the failure models, we used a training dataset which

is the subset of the failure data. So, we used actual installation numbers to es-

timate the failure rates and trained our models accordingly. Here we may be

concerned that our test accuracies of failure models are too optimistic since we

do not consider the uncertainty that comes from the prediction of installation

numbers. To obtain more realistic results, we can generate installation numbers

for failure data and use these values in the training and testing phases. Further-

more, this procedure can be repeated for all binary combinations of installation

and failure models to obtain a comparison of two-phased model structures. Of

course, this comparison is quite computationally costly, and the total run time

can be extremely long.

In future work, the prediction accuracy of models can be improved by imple-

menting hybrid models. As a popular choice in Bayesian modeling, stacking or

the Bayesian model averaging can be used when non of the competing models are

fully representative. The study by Yao [31] indicates that stacking Bayesian mod-

els provides more robust predictions, and they can be implemented by adjusting

the averaging weights with estimated loo or WAIC. Poor predictive results may

indicate that there is unobserved heterogeneity in our data.

Some part of this variation can be expressed by properly adding the age covari-

ate. The non-linearity inherent in age covariate can be modeled by an artificial

neural network(ANN). Furthermore, a Bayesian ANN can improve the predictive

accuracy more dramatically [32]. For modeling the hazard probabilities in the

second part, a more complex structure can be used. We believe that the age of

breakdown might affect the hazard probabilities; thus, representing those proba-

bilities according to time can be more appropriate. On the other hand, data may
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not be informative enough for such complex modeling. For implementing this sur-

vival model, data may need to be balanced using oversampling or undersampling

methods.
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