Genetically-tunable mechanical properties of bacterial functional amyloid nanofibers

dc.citation.epage4345en_US
dc.citation.issueNumber17en_US
dc.citation.spage4337en_US
dc.citation.volumeNumber33en_US
dc.contributor.authorAbdelwahab, M. T.en_US
dc.contributor.authorKalyoncu, E.en_US
dc.contributor.authorOnur, T.en_US
dc.contributor.authorBaykara, M. Z.en_US
dc.contributor.authorSeker U.O.S.en_US
dc.date.accessioned2018-04-12T11:08:52Z
dc.date.available2018-04-12T11:08:52Z
dc.date.issued2017en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Mechanical Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractBacterial biofilms are highly ordered, complex, dynamic material systems including cells, carbohydrates, and proteins. They are known to be resistant against chemical, physical, and biological disturbances. These superior properties make them promising candidates for next generation biomaterials. Here we investigated the morphological and mechanical properties (in terms of Young’s modulus) of genetically-engineered bacterial amyloid nanofibers of Escherichia coli (E. coli) by imaging and force spectroscopy conducted via atomic force microscopy (AFM). In particular, we tuned the expression and biochemical properties of the major and minor biofilm proteins of E. coli (CsgA and CsgB, respectively). Using appropriate mutants, amyloid nanofibers constituting biofilm backbones are formed with different combinations of CsgA and CsgB, as well as the optional addition of tagging sequences. AFM imaging and force spectroscopy are used to probe the morphology and measure the Young’s moduli of biofilm protein nanofibers as a function of protein composition. The obtained results reveal that genetically-controlled secretion of biofilm protein components may lead to the rational tuning of Young’s moduli of biofilms as promising candidates at the bionano interface.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:08:52Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acs.langmuir.7b00112en_US
dc.identifier.issn0743-7463
dc.identifier.urihttp://hdl.handle.net/11693/37291
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.langmuir.7b00112en_US
dc.source.titleLangmuiren_US
dc.subjectAtomic force microscopyen_US
dc.subjectBiofilmsen_US
dc.subjectEscherichia colien_US
dc.subjectGlycoproteinsen_US
dc.subjectMechanical propertiesen_US
dc.subjectNanofibersen_US
dc.subjectBacterial biofilmen_US
dc.subjectBio-nano interfacesen_US
dc.subjectBiochemical propertiesen_US
dc.subjectEscherichia coli (E. coli)en_US
dc.subjectForce spectroscopyen_US
dc.subjectProtein componentsen_US
dc.subjectProtein compositionen_US
dc.subjectProtein nanofibersen_US
dc.subjectProteinsen_US
dc.titleGenetically-tunable mechanical properties of bacterial functional amyloid nanofibersen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Genetically-Tunable Mechanical Properties of Bacterial Functional.pdf
Size:
5.33 MB
Format:
Adobe Portable Document Format
Description:
Full printable version