Dislocation density dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum structures

Date

2013-01-14

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
12
downloads

Citation Stats

Series

Abstract

We study electroabsorption (EA) behavior of InGaN/GaN quantum structures grown using epitaxial lateral overgrowth (ELOG) in correlation with their dislocation density levels and in comparison to steady state and time-resolved photoluminescence measurements. The results reveal that ELOG structures with decreasing mask stripe widths exhibit stronger EA performance, with a maximum EA enhancement factor of 4.8 compared to the reference without ELOG. The analyses show that the EA performance follows similar trends with decreasing dislocation density as the essential parameters of the photoluminescence spectra (peak position, width and intensity) together with the photoluminescence lifetimes. While keeping the growth window widths constant, compared to photoluminescence behavior, however, EA surprisingly exhibits the largest performance variation, making EA the most sensitive to the mask stripe widths. (C) 2013 Optical Society of America

Source Title

Optics Express

Publisher

Optical Society of America

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English