Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal‐tunable metamaterial

buir.contributor.authorSoydan, Mahmut Can
buir.contributor.authorGhobadi, Amir
buir.contributor.authorDeniz Umut, Deniz Umut
buir.contributor.authorErtürk, Vakur Behçet
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage2000066-6en_US
dc.citation.issueNumber7en_US
dc.citation.spage2000066-1en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorSoydan, Mahmut Can
dc.contributor.authorGhobadi, Amir
dc.contributor.authorYıldırım, Deniz Umut
dc.contributor.authorErtürk, Vakur Behçet
dc.contributor.authorÖzbay, Ekmel
dc.date.accessioned2021-03-05T09:26:15Z
dc.date.available2021-03-05T09:26:15Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractMaterials with a tunable optical response that can be controllably tailored using external stimuli excitation have undergone considerable research effort for the development of active optical devices, such as thermo‐optical modulators. Although bismuth (Bi) nanodots, embedded into glass matrices, have been proven to have a thermo‐optical response, the recyclability of the structure in solid–liquid phase transitions is a major challenge. Herein, a facile and lithography‐free fabrication method is proposed to realize densely packed stand‐alone Bi nanorods (NRs), with deep subwavelength gaps and a resonance at the midinfrared range (λ ≅ 4.462 μm). Owing to these ultrasmall gaps that support lossy Mie‐like resonances, strong field confinement is achieved, and the resonance wavelength exhibits great sensitivity to temperature, as the thermal sensitivity reaches as high as 1.0316 nm °C−1. This operation is conducted in the moderate temperature interval of 25–85 °C, which is far from the melting point of Bi. Overall, our simple, robust, and high‐performance device is highly promising for realizing optical switches, thermo‐optic modulators, and infrared camouflage.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2021-03-05T09:26:15Z No. of bitstreams: 1 Deep_subwavelength_light_confinement_in_disordered_bismuth_nanorods_as_a_linearly_thermal_tunable_metamaterial.pdf: 1074704 bytes, checksum: 5abf3f2446093bb8c672f44e243d14f4 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-05T09:26:15Z (GMT). No. of bitstreams: 1 Deep_subwavelength_light_confinement_in_disordered_bismuth_nanorods_as_a_linearly_thermal_tunable_metamaterial.pdf: 1074704 bytes, checksum: 5abf3f2446093bb8c672f44e243d14f4 (MD5) Previous issue date: 2020en
dc.embargo.release2021-07-01
dc.identifier.doi10.1002/pssr.202000066en_US
dc.identifier.issn1862-6254
dc.identifier.urihttp://hdl.handle.net/11693/75829
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttps://dx.doi.org/10.1002/pssr.202000066en_US
dc.source.titlePhysica Status Solidi - Rapid Research Lettersen_US
dc.subjectBismuthen_US
dc.subjectLithography-freeen_US
dc.subjectMetamaterialsen_US
dc.subjectThermally-tunableen_US
dc.titleDeep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal‐tunable metamaterialen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_subwavelength_light_confinement_in_disordered_bismuth_nanorods_as_a_linearly_thermal_tunable_metamaterial.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: