Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties

Date
2016
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
RSC Advances
Print ISSN
2046-2069
Electronic ISSN
Publisher
Royal Society of Chemistry
Volume
6
Issue
52
Pages
46089 - 46099
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Free-standing nanofibrous webs of cyclodextrin/geraniol-inclusion complex (CD/geraniol-IC-NF) showing antibacterial, antioxidant activity and slow release of geraniol were developed as flavour/fragrance releasing materials via electrospinning. The electrospinning of CD/geraniol-IC-NFs with uniform and bead-free morphology was achieved without using a polymer matrix. Three types of CDs modified with hydroxypropyl and methyl groups (HPβCD, MβCD, and HPγCD) were used to obtain CD/geraniol-IC-NFs. The polymer-free CD/geraniol-IC-NFs allow us to attain much higher geraniol loading (∼11%, w/w) when compared to electrospun polymeric nanofibers containing CD/geraniol-IC (∼5%, w/w). Geraniol has a volatile nature, yet, a significant amount of geraniol (∼60-90%) was preserved in CD/geraniol-IC-NFs due to the complexation, whereas evaporation of geraniol was unavoidable for polymeric nanofibers incorporating geraniol without cyclodextrin. Short-term (3 h) temperature dependent release (37 °C, 50 °C, and 75 °C) and long-term open air (50 days, at RT) release tests revealed that MβCD/geraniol-IC-NF released less geraniol compared to HPβCD/geraniol-IC-NF and HPγCD/geraniol-IC-NF, indicating that much stronger inclusion complexation was formed between MβCD and geraniol. The release of geraniol from CD/geraniol-IC-NFs prevented the colonization of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria to a great extent, as observed in the antibacterial activity results. It was observed that CD/geraniol-IC-NFs had higher antioxidant activity compared to pure geraniol due to the solubility increase. In brief, the results reported here may open a new door to enhance the performance of essential oils and flavour/fragrances, to preserve volatile compounds from evaporation and to better understand the potential of CD/IC-NFs as carrier systems for guest compounds in the food, cosmetic and household cleaning industries.

Course
Other identifiers
Book Title
Keywords
Antioxidants, Bacteria, Cyclodextrins, Electrospinning, Escherichia coli, Essential oils, Evaporation, Nanofibers, Oils and fats, Spinning (fibers), Thermal processing (foods), Volatile organic compounds, Anti-bacterial activity, Anti-oxidant activities, Antioxidant properties, Inclusion complexation, Polymeric nanofibers, Staphylococcus aureus, Temperature dependent, Volatile compounds, Monoterpenes
Citation
Published Version (Please cite this version)