Publication:
Reprogrammable metasurface design for NIR beam steering and active filtering

Research Projects

Organizational Units

Journal Issue

Abstract

Reprogrammable metasurfaces enable active modulation of light at subwavelength scales. Operating in the microwave, terahertz, and mid-infrared ranges, these metasurfaces find applications in communications, sensing, and imaging. Electrically tunable metasurfaces operating in the near-infrared (NIR) range are crucial for light detection and ranging (LiDAR) applications. Achieving a NIR reprogrammable metasurface requires individual gating of nano-antennas, emphasizing effective heat management to preserve device performance. To this end, here we propose an electrically tunable Au-vanadium dioxide (VO2) metasurface design on top of a one-dimensional Si-Al2O3 photonic crystal (PC), positioned on a SiC substrate. Each individual Au-VO2 nano-antenna is switched from an Off to ON state via Joule heating, enabling the programming of the metasurface using 1-bit (binary) control. While operating as a nearly perfect reflector at lambda(0)=1.55 mu m, the materials, thickness, and number of the layers in the PC are carefully chosen to ensure it acts as a thermal metamaterial. Moreover, with high optical efficiency (R similar to 40% at lambda(0)), appropriate thermal performance, and feasibility, the metasurface also enables broadband programmable beam steering in the 1.4-1.7 mu m range for a wide steering angle range. This metasurface design also offers active control over NIR light transmittance, reflectance and absorptance in the wavelength range of 0.75-3 mu m. These characteristics render the device practical for LiDAR and active filtering.

Description

Citation