Scholarly Publications

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 772
  • ItemOpen Access
    Oriented colloidal quantum wells: Pushing the limits, breaking records
    (META Conference, 2023) Demir, Hilmi Volkan; Lalanne, P.; Zouhdi, S.
    We introduce a powerful, large-area self-assembly technique for orienting colloidal quantum wells in all face-down configuration. We demonstrate three-dimensional constructs of such oriented self-assemblies with monolayer precision. We present the most recent examples of LEDs and lasers using these oriented assemblies for lighting and displays. Here we also show record high efficiency from their LEDs and record thin gain medium from their laser structures. These solution-processed quantum wells hold great promise to challenge their epitaxial thin-film counterparts in semiconductor optoelectronics. © 2023, META Conference. All rights reserved.
  • ItemOpen Access
    Improvement of fatigue properties of EN AW 6082 aluminum alloy using different deep rolling directions
    (Universiti Malaysia Pahang, 2023-06-30) Görtan, Mehmet Okan; Yüksel, Berkay
    Deep rolling (DR) is an effective mechanical surface treatment method to improve the fatigue properties of engineering components. In this method, the surface of the component was rolled using a roller with a predetermined force to obtain reduced roughness, hardness increases and compressive residual stresses in the surface region. These alterations allow for increasing the fatigue lives of the components in industrial applications. In the current study, DR was applied in tangential and longitudinal directions on specimens that were manufactured using EN-AW 6082-T6 aluminum. The resulting roughness, hardness and residual stresses were determined experimentally. Fatigue tests were carried out to determine the improvements in fatigue properties after DR. It was found that DR-induced compressive residual stresses depend on DR direction considerably. Due to this reason, fatigue strength improvements were found to be different for different DR direction applications. Longitudinal rolling resulted in a 23% fatigue strength increase compared to a 7% increase for tangential rolling. For both DR direction applications, fatigue cracks were shown to initiate at the sub-surface region, whereas the as-turned specimens exhibited surface crack initiation.
  • ItemOpen Access
    60W stacked-HEMT based asymmetric X-band GaN SPDT switch for single chip T/R modules
    (IEEE - Institute of Electrical and Electronics Engineers, 2023-10-25) Ertürk, Volkan; Gürdal, Armağan; Çankaya Akoğlu, Büşra; Özbay, Ekmel
    This paper presents a high-power, asymmetric single-pole double-throw (SPDT) monolithic microwave integrated circuit (MMIC) switch using high electron mobility transistors (HEMT) with AlGaN/GaN technology for single chip X-band T/R modules. The SPDT switch is designed in series-shunt topology for high-power handling and low-loss performance. For high-power handling, shunt-stacked HEMTs on the transmit (Tx) path and series-stacked HEMTs on the receive (Rx) path are used. In its Tx mode, the switch has achieved an insertion loss better than 0.75 dB throughout the 6-13 GHz bandwidth with a return loss of 14 dB and an isolation of 28 dB. It can handle more than 60 W RF input power at 0.1 dB compression. In its Rx mode, the switch can receive signals with an insertion loss lower than 1.15 dB with 14 dB return loss and 19 dB isolation. With its low insertion and high-power handling capacity from C-band to Ku-band, this switch shows state-of-the-art performance for communication systems.
  • ItemOpen Access
    Photocatalytic CO2 conversion: Beyond the earth
    (Elsevier, 2023-07-25) Low, J.; Zhang, C.; Karadaş, Ferdi.; Xiong, Y.
    The issue of climate change attributed to CO2 emissions has led to increased attention towards the study and development of artificial photosynthesis through photocatalytic CO2 conversion to recon‐struct the broken carbon cycle in nature. Photocatalytic CO2 conversion can simultaneously reduce the CO2 concentration in the atmosphere and produce valuable hydrocarbon fuels. With the recent discovery of abundant reserves of CO2 and water at extraterrestrial sites, it has been proposed that photocatalytic CO2 conversion can also be implemented at extraterrestrial sites to build up an artificial carbon cycle for providing propellants and life support for space missions. This comment presents our perspectives on the development of photocatalytic CO2 conversion beyond Earth, with a focus on its general principles and potential challenges that may arise at extraterrestrial sites. Finally, a brief overview of the future research directions in this field is presented.
  • ItemOpen Access
    Effect of Si-rich SiXNY multilayer passivation material on the DC electrical characteristics of AlGaN/GaN HEMTs
    (Springer, 2023-08-16) Dinçer, Ahmet Serhat; Haliloğlu, Mehmet Taha; Toprak, Ahmet; Altındal, Ş.; Özbay, Ekmel
    In this study, the effect of SiXNY bilayer passivation materials on the electrical properties of an AlGaN high electron mobility transistor (HEMT) was investigated. AlGaN/GaN HEMTs were grown on 3-inch silicon carbide by the metal organic chemical vapor deposition method, which is one of the chemical vapor deposition methods. SiXNY passivation materials with two different Si concentrations, which were 50/1 and 70/3 (Silane—SiH4/Ammonia—NH3), were used. The passivation material coating process was carried out with the plasma enhanced chemical vapor deposition (PECVD) system. The first sample was a coated single layer with 70/3 (SiH4/NH3) passivation material at 75 nm and the second sample was coated with bilayer (two layers) passivation materials wherein the first layer was coated with 15 nm 50/1 (SiH4/NH3) and the second layer was coated with 60 nm 70/3 (SiH4/NH3). The obtained results were compared. Experimental results show that the drain leakage current (Id) and gate leakage current (Ig) decreases; current density (Idss) and transconductance (gm) increases with bilayer passivation.
  • ItemOpen Access
    First principles calculations of electronic and optical properties of InSe nanosheets doped with noble metal atoms
    (Elsevier, 2023-04-05) Narin, P.; All, J. M. Abbas; Kutlu, E. Narin; Lisesivdin, S.B.; Özbay, Ekmel
    Monolayer Indium Selenide (ML-InSe) is studied for 4x4 supercell structure through ab initio calculations. The electronic and optical properties of ML-InSe for both pristine and substitutional doped ML-InSe with Palladium (Pd), Platinum (Pt), Silver (Ag), and Gold (Au) atoms have been calculated. With substitutional doping, ML-InSe has been observed to have a spin-dependent electronic structure. The flat energy bands near the Fermi level are observed in ML-InSe with doping elements placed in In site. The flat bands of d orbitals of some noble metal atoms are formed by the projected density of states (PDOS). The PDOS calculations show that the s-orbital of In and p-orbital of Se form the conduction band edge. The energetically favorable position of doping atoms is found to be the PtIn substitution atom according to formation energy calculations. For each studied structure, the bond length of the first neighbor of doping atoms in doped ML-InSe, static dielectric constant (ε0), refractive index, and energy band gap have been calculated. In the structure ML-InSe with AuSe, ε0 reaches ∼ 8.15. Another important result is that substitutional doping induces some peaks in the lower energy region of the imaginary part of the dielectric function. These peaks mainly refer to the absorption in related regions and may be important for the optoelectronic properties of ML-InSe.
  • ItemOpen Access
    An ab initio study of vertical heterostructures formed by CdO and SnC monolayers
    (Elsevier, 2024-01-30) Seyedmohammadzadeh, Mahsa; Mobaraki, Arash; Tanatar, B.; Gülseren, Oğuz
    Assembling two dimensional (2D) materials in vertical heterostructures is one of the main techniques for tuning electronic and optical properties. In most cases, known as van der Waals heterostructures (vdWHs), the interlayer distances are larger than typical covalent bond lengths resulting in weak interlayer interactions. It has been shown that reducing the distance between the layers can significantly alter the properties of separated layers, which is not so noticeable in vdWHs and thus creates a new platform for controlling the physical properties of 2D materials. Motivated by enhanced properties of 2D vertical heterostructures, employing ab-initio calculations based on density functional theory we examined CdO/SnC systems in four different configurations. Our results reveal that in spite of thermodynamic and mechanical stabilities of all considered structures, according to the calculated phonon frequencies, only the structure formed by placing the Sn atom on the O atom and the C atom on the Cd atom is dynamically stable at zero temperature. This structure has an interlayer distance of 2.52 Å which is smaller than the interlayer distance in typical vdWHs. We investigated the electronic and optical properties of this dynamically stable structure utilizing GW approximation and solving Bethe–Salpeter equation. Unlike the monolayer CdO which possesses a single optical absorption peak close to the red light energy, the considered CdO/SnC structure has an optical band gap of 1.14 eV, and it can absorb 13% of incident light in the blue light region.
  • ItemOpen Access
    Light-sensitive monolayer-thick nanocrystal skins of face-down self-oriented colloidal quantum wells
    (Royal Society of Chemistry, 2023-10-20) Bozkaya, Taylan; Işık, Furkan; Bozkaya, İklim; Delikanlı, Savaş; Ünal, Emre; Demir, Hilmi Volkan
    Colloidal quantum wells (CQWs), a quasi-two-dimensional, atomically-flat sub-family of semiconductor nanocrystals, are well suited to produce excellent devices for photosensing applications thanks to their extraordinarily large absorption cross-sections. In this work, we propose and demonstrate a new class of light-sensitive nanocrystal skins (LS-NS) that employ a monolayer of face-down orientation-controlled self-assembled CQWs as the active absorbing layer in the UV-visible range. This CQW LS-NS platform enables non-conventional photosensing operation that relies on the strong optical absorption of the monolayered assembly of CQWs and the subsequent photogenerated potential build-up across the device, allowing for self-powered operation. Here such self-oriented CQWs reduce the surface roughness in their monolayer-thick film, essential to high device performance. Owing to their ease of fabrication and low cost, these devices hold great promise for large-scale use in semi-transparent photosensing surfaces.
  • ItemOpen Access
    Phase-change Fano resonator for active modulation of thermal emission
    (Royal Society of Chemistry, 2023-06-10) Khalichi, Bahram; Ghobadi, Amir; Kalantari Osgouei, Ataollah; Rahimian Omam, Zahra; Kocer, Hasan; Ozbay, Ekmel
    Optical modulation of heat emission using spectrally selective infrared (IR) metasurface nanoantenna designs has found potential applications in various fields, including radiative cooling and thermal camouflage. While radiative cooling requires emitters to emit within atmospheric transmissive windows (mainly located at 8–14 μm), thermal camouflage structures have to operate within the non-transmissive window (5–8 μm) to hide an object from thermal imaging systems and cameras. Therefore, a passive nanoantenna structure cannot satisfy both conditions simultaneously. In this paper, we propose an adaptive nanoantenna emitter made of samarium nickelate (SmNiO3) phase change material to cover both functionalities with a single Fano resonator-based design. As the temperature rises, the thermal signature of the nanoantenna at the transmissive window is suppressed; therefore, a better camouflage performance is achieved. The dynamic tunability of switching from radiative cooling to thermal camouflage of the proposed Fano resonator-based design is quantitatively demonstrated using emissive power calculations under different conditions.
  • ItemOpen Access
    Manipulating intermetallic charge transfer for switchable external stimulus-enhanced water oxidation electrocatalysis
    (John Wiley and Sons Inc, 2023-10-26) Chalil Oglou, Ramadan; Ulusoy Ghobadi, Türkan Gamze; Hegner, F. S. .; Galán-Mascarós, J. R.; López, N; Özbay, Ekmel; Karadaş, Ferdi
    Electrocatalytic processes involving the oxygen evolution reaction (OER) present a kinetic bottleneck due to the existence of linear-scaling relationships, which bind the energies of the different intermediates in the mechanism limiting optimization. Here, we offer a way to break these scaling relationships and enhance the electrocatalytic activity of a Co−Fe Prussian blue modified electrode in OER by applying external stimuli. Improvements of ≈11 % and ≈57 % were achieved under magnetic field (0.2 T) and light irradiation (100 mW cm−2), respectively, when working at fixed overpotential, η=0.6 V at pH 7. The observed enhancements strongly tie in with the intermetallic charge transfer (IMCT) intensity between Fe and Co sites. Density Functional Theory simulations suggest that tuning the IMCT can lead to a change of the OER mechanism to an external stimuli-sensitive spin crossover-based pathway, which opens the way for switchable electrocatalytic devices.
  • ItemOpen Access
    Adaptive thermally tunable radiative cooling with angle insensitivity using phase-change-material-based metasurface
    (Institute of Physics Publishing Ltd., 2023-11-17) Boşdurmaz, Ekin Bircan; Ghobadi, Amir; Özbay, Ekmel
    Radiative cooling is the passive cooling of a material with the help of a specific spectral response to emit thermal energy into space through atmospheric transparency windows. However, most of the proposed designs have no dynamically tunable emission response. In this paper, we present a feasible inverse pyramid structure made of a phase change material (PCM) on top of a metallic mirror to realize an adaptive radiative cooler with almost angle-independent emission response. The design uses the thermally controlled PCM called Samarium nickelate (SmNiO3) to actively tune the spectral response of the design, which, in turn, allows the design to radiatively cool itself. The emission response of the design is compatible with atmospheric transmissive windows. As the design heated up to higher temperatures, the peak of the emission spectrum red-shifts and moves toward the atmospheric transparency window.
  • ItemOpen Access
    Microneedle technology as a new standpoint in agriculture: treatment and sensing
    (Elsevier, 2023-09) Ece, Emre; Eş, İsmail; İnci, Fatih
    Preventing plant loss and improving their health status are essential for agricultural industry. Correspondingly, the deprivation of plants severely impacts our ecological system. As such, global efforts have been intensely made to promote the development of advanced sensing and treatment platforms to forestall plant loss. Existing technologies mainly encounter a number of challenges in providing results in a non-invasive, rapid turnaround, and affordable fashions. Accordingly, notable progressions in innovative approaches—particularly biosensing and delivery platforms, are vastly required for agriculture realm. In this regard, microneedles have emerged as a pivotal technological tool that plays multifaceted roles in biosensing and delivery systems, with attention of growing towards agriculture. Simply put, microneedles offer several advantages over conventional methods for being less invasive, rapid, and highly precise. In this review, recent advancements in microneedle technologies including their implementations in agriculture are highlighted coherently. In particular, extracting DNA from plant leaves and expressing transient genes using microneedles are elaborated in details. Microneedle-based sensing platforms for detecting essential compounds and secondary metabolites are discussed as well. Recent advances focusing the delivery of agrochemicals and nanotherapeutics via microneedles are elaborated. By this means, this review aims to bridge the existing gaps between microneedles and agriculture precisely.
  • ItemOpen Access
    Development of AZO TCOs with ALD for HEMT and HJSC solar cell applications
    (Gazi univ, 2021-02-11) Tugrul, D.; Cakmak, H.; Özbay, Ekmel; Imer, B.
    Transparent Conductive Oxide (TCO) films are widely used in optoelectronic devices, such as solar cells, LEDs, and Lasers. Utilization of these contacts directly affects the device efficiencies. Purpose of this study is to produce and optimize properties of Aluminum doped Zinc Oxide (AZO) using a vapor phase technique, Atomic Layer Deposition (ALD) for (n+) a-Si:H surface of silicon Heterojunction Solar Cells (HJSCs) and High Electron Mobility Transistor (HEMT) applications. This study is focused on the effect of the deposition temperature and aluminum atomic concentration on structural, electrical and optical properties of ALD grown AZO ohmic contact films. The results show that as-deposited films have 80-90% transmittance in the visible spectra, low resistance (2.04x10(-3) ohm.cm) and mobility value of 5.25 cm(2)/V.s.
  • ItemOpen Access
    Low-temperature synthesis of silicon oxynitride-doped si for tunable bragg gratings homogeneously deposited on Si, SiO2, and borosilicate substrates and the tip of SM and PM optical fibers
    (John Wiley and Sons Inc, 2023-06-19) Karatutlu, Ali; Tabaru, Timuçin Emre; Ortaç, Bülend
    Optical tunability and repeatability are essential in fabricating optoelectronic devices from waveguides to Bragg gratings (BGs) for high-energy, high-power, mode-locking, and sensing applications. For this purpose, a controlled adjustment in the optical properties, including the refractive index of the deposited nanolayers, becomes critical. This study reveals that silicon oxynitride (SiON) doping into silicon (Si) offers a new way for the preparation of novel Si-based devices with an emphasis on the BGs for filtering a particular portion of an electromagnetic spectrum, including the wavelengths of 800, 976, 1550, and 1840 nm. Control on the incident angle dependence of the BGs is demonstrated at Watt-level for the wavelength of 976 nm. Amorphous SiON-doped Si layers on alternating SiO2 can be synthesized on bulk substrates and different optical fibers at relatively low temperatures with wide and narrow bandwidths. The high reflectivity of the novel Si-based BGs reveals over −22 dB reflection using typical optical fibers, including standardsingle-mode fibers and high-birefringent polarization-maintaining (PM) fibers. The polarized transmission measurement over the BG on the PMfiber shows the BGs do not deteriorate the PM properties, strongly yielding a beat length of 1.68 mm and birefringence of 9.2 × 10−4 at the telecom C band.
  • ItemOpen Access
    Thermal conductivity and phase-change properties of boron nitride–lead oxide nanoparticle-doped polymer nanocomposites
    (MDPI AG, 2023-05-16) Ortaç, Bülend; Mutlu, Saliha; Baskan, T.; Savaşkan Yılmaz, Sevil; Yilmaz, A. H.; Erol, B.
    Thermally conductive phase-change materials (PCMs) were produced using the crosslinked Poly (Styrene-block-Ethylene Glycol Di Methyl Methacrylate) (PS-PEG DM) copolymer by employing boron nitride (BN)/lead oxide (PbO) nanoparticles. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) methods were used to research the phase transition temperatures, the phase-change enthalpies (melting enthalpy (ΔHm), and crystallization enthalpies (ΔHc)). The thermal conductivities (λ) of the PS-PEG/BN/PbO PCM nanocomposites were investigated. The λ value of PS-PEG/BN/PbO PCM nanocomposite containing BN 13 wt%, PbO 60.90 wt%, and PS-PEG 26.10 wt% was determined to be 18.874 W/(mK). The crystallization fraction (Fc) values of PS-PEG (1000), PS-PEG (1500), and PS-PEG (10,000) copolymers were 0.032, 0.034, and 0.063, respectively. XRD results of the PCM nanocomposites showed that the sharp diffraction peaks at 17.00 and 25.28 °C of the PS-PEG copolymer belonged to the PEG part. Since the PS-PEG/PbO and the PS-PEG/PbO/BN nanocomposites show remarkable thermal conductivity performance, they can be used as conductive polymer nanocomposites for effective heat dissipation in heat exchangers, power electronics, electric motors, generators, communication, and lighting equipment. At the same time, according to our results, PCM nanocomposites can be considered as heat storage materials in energy storage systems.
  • ItemOpen Access
    Making the next generation of therapeutics: mRNA meets synthetic biology
    (American Chemical Society, 2023-09-15) Hınçer, Ahmet; Ahan, Recep Erdem; Aras, Ebru; Şeker, Urartu Özgür Şafak
    The development of mRNA-based therapeutics centers around the natural functioning of mRNA molecules to provide the genetic information required for protein translation. To improve the efficacy of these therapeutics and minimize side effects, researchers can focus on the features of mRNA itself or the properties of the delivery agent to achieve the desired response. The tools considered for mRNA manipulation can be improved in terms of targetability, tunability, and translatability to medicine. While ongoing studies are dedicated to improving conventional approaches, innovative approaches can also be considered to unleash the full potential of mRNA-based therapeutics. Here, we discuss the opportunities that emerged from introducing synthetic biology to mRNA therapeutics. It includes a discussion of modular self-assembled mRNA nanoparticles, logic gates on a single mRNA molecule, and other possibilities.
  • ItemOpen Access
    Glycosylation circuit enables improved catalytic properties for recombinant alkaline phosphatase
    (American Chemical Society, 2023-10-03) Bozkurt, Eray Ulaş; Çağıl, İrem Niran; Şahin Kehribar, Ebru; Işılak, Musa Efe; Şeker, Urartu Özgür Şafak
    Protein glycosylation is one of the most crucial and common post-translational modifications. It plays a fate-determining role and can alter many properties of proteins. Here, we engineered a Campylobacter jejuni N-linked glycosylation machinery by overexpressing one of the core glycosylation-related enzymes, PgIB, to increase the glycosylation rate. It has been previously shown that by utilizing N-linked glycosylation, certain recombinant proteins have been furnished with improved features, such as stability and solubility. We utilized N-linked glycosylation using an engineered glycosylation pathway to glycosylate a model enzyme, the alkaline phosphatase (ALP) enzyme in Escherichia coli. We have investigated the effects of glycosylation on enzyme properties. Considering the glycosylation mechanism is highly dependent on accessibility of the glycosylation tag, ALP constructs carrying the glycosylation tag at different locations of the gene have been constructed, and glycosylation rates have been calculated. Our results showed that, upon glycosylation, ALP features in terms of thermostability, proteolytic stability, tolerance to suboptimal pH, and denaturing conditions are dramatically improved. The results indicated that the N-linked glycosylation mechanism can be employed for protein manipulation for industrial applications.
  • ItemOpen Access
    Near-unity emitting, widely tailorable, and stable exciton concentrators built from doubly gradient 2D semiconductor nanoplatelets
    (American Chemical Society, 2023-10-24) Liang, X.; Durmuşoğlu, E. G.; Lunina, M.; Hernandez-Martinez, P. L.; Valuckas, V.; Yan, F.; Lekina, Y.; Sharma, V. K.; Yin, T.; Ha, S. T.; Shen, Z. X.; Sun, H.; Kuznetsov, A.; Demir, Hilmi Volkan
    The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core–shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core–shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.
  • ItemOpen Access
    High external quantum efficiency light-emitting diodes enabled by advanced heterostructures of Type-II nanoplatelets
    (American Chemical Society, 2023-04-25) Durmuşoğlu, E. G.; Hu, S.; Hernandez-Martinez, P. L.; İzmir, M.; Shabani, Farzan; Guo, M.; Gao, H.; Işık, Furkan; Delikanlı, Savaş; Sharma, V. K.; Liu, B.; Demir, Hilmi Volkan
    Colloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1–x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.
  • ItemOpen Access
    3D-printed, implantable alginate/CuS nanoparticle scaffolds for local tumor treatment via synergistic photothermal, photodynamic, and chemodynamic therapy
    (American Chemical Society, 2023-09-08) Çolak, B.; Cihan, M. C.; Ertaş, Yavuz Nuri
    A promising method for treating cancer is localized therapy, which mainly employs hydrogel-based delivery systems. Recently, the capability of 3D printing techniques has been revealed as a promising tool to tackle cancer. In this work, alginate (Alg)-based 3D-printed implantable scaffolds containing bovine serum albumin (BSA)-coated copper sulfide (CuS) nanoparticles, Alg-CuS/BSA, were fabricated for local breast cancer therapy and applied to inhibit tumor development through utilizing synergistic photothermal, photodynamic, and chemodynamic effects. The Alg-CuS/BSA scaffolds were flexible; however, their modulus was significantly lower than that of human breast tissues. Under 808 nm irradiation, the scaffolds demonstrated efficient photothermal, photodynamic, and chemodynamic effects both in vitro and in vivo via improving photothermal transduction and singlet-oxygen formation, and also as Fenton catalysts, the scaffolds produced hydroxyl radicals in the presence of H2O2 within the tumor microenvironment. Without the use of conventional anticancer drugs, the promising tumor treatment of implanted scaffolds can offer potential applications in local cancer treatment and prevent metastasis after surgical removal of tumors.