Browsing by Subject "silicon"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Chemically specific dynamic characterization of photovoltaic and photoconductivity effects of nanostructures by X-ray photoelectron spectroscopy(2010) Ekiz, Okan ÖnerX-Ray Photoelectron Spectroscopy is a widely used characterization method for chemical analysis of surfaces. In this thesis, We report characterization of photovoltaic and photoconductivity effects on nanostructured surfaces through light induced changes in the X-ray photoelectron spectra (XPS). The technique combines the chemical specificity of XPS and the power of surface photovoltage spectroscopy (SPV), with the addition of the ability to characterize photoconductivity under both static and dynamic optical excitation. A theoretical model that quantitatively describes the features of the observed spectra is presented. We demonstrate the applicability of the model on a multitude of sample systems, including homo- and heterojunction solar cells, CdS nanoparticles on metallic or semiconducting substrates, and carbon nanotube films on silicon substrates. A-Si/c-Si heterojunction solar cell is fabricated to characterize photovoltage generation in a nanostructured solar cell. Cadmium Sulfide (CdS) nanoparticles were synthesized by a solvothermal route. Both Multi Wall Carbon Nanotube (MWCNT) and Single Wall Carbon Nanotube (SWCNT) films were characterized with different substrates by XPS. Raman Microscopy, EDS, SEM, XRD, SAXS are used to characterize the samples and solar cells.Item Open Access On the strain in silicon nanocrystals(2009) Yılmaz, DündarIn this Thesis we present our achievements towards an understanding of atomistic strain mechanisms and interface chemistry in silicon nanocrystals. The structural control of silicon nanocrystals embedded in amorphous oxide is currently an important technological problem. First, our initial attempt is described to simulate the structural behavior of silicon nanocrystals embedded in amorphous oxide matrix based on simple valence force fields as described by Keatingtype potentials. Next, the interface chemistry of silicon nanocrystals (NCs) embedded in amorphous oxide matrix is studied through molecular dynamics simulations with the chemical environment being governed by the reactive force field model. Our results indicate that the Si NC-oxide interface is more involved than the previously proposed schemes which were based on solely simple bridge or double bonds. We identify different types of three-coordinated oxygen complexes, previously not noted. The abundance and the charge distribution of each oxygen complex is determined as a function of the NC size as well as the transitions among them. Strain has a crucial effect on the optical and electronic properties of nanostructures. We calculate the atomistic strain distribution in silicon NCsup to a diameter of 3.2 nm embedded in an amorphous silicon dioxide matrix. A seemingly conflicting picture arises when the strain field is expressed in terms of bond lengths versus volumetric strain. The strain profile in either case shows uniform behavior in the core, however it becomes nonuniform within 2- 3 ˚A distance to the NC surface: tensile for bond lengths whereas compressive for volumetric strain. We reconcile their coexistence by an atomistic strain analysis. Vibrational density of states (VDOS) affects the optical properties of Si-NCs. VDOS obtained by calculating velocity autocorrelation function (VACF) using velocities of the atoms is extracted from the molecular dynamics simulations. The information on bonding topology enables classification of atoms in the system with respect to their neighbor atoms. With help of this information we separate contributions of different type of atoms to the VDOS. Calculating VACF of different type of atoms such as surface atoms and core atoms of nanocrystal, to the system facilitates understanding of the effects of strain fields and interface chemistry to the VDOS.Item Open Access Practical multi-featured perfect absorber utilizing high conductivity silicon(Institute of Physics Publishing, 2016) Gok, A.; Yilmaz, M.; Bıyıklı, N.; Topallı, K.; Okyay, Ali KemalWe designed all-silicon, multi-featured band-selective perfect absorbing surfaces based on CMOS compatible processes. The center wavelength of the band-selective absorber can be varied between 2 and 22 μm while a bandwidth as high as 2.5 μm is demonstrated. We used a silicon-on-insulator (SOI) wafer which consists of n-type silicon (Si) device layer, silicon dioxide (SiO2) as buried oxide layer, and n-type Si handle layer. The center wavelength and bandwidth can be tuned by adjusting the conductivity of the Si device and handle layers as well as the thicknesses of the device and buried oxide layers. We demonstrate proof-of-concept absorber surfaces experimentally. Such absorber surfaces are easy to microfabricate because the absorbers do not require elaborate microfabrication steps such as patterning. Due to the structural simplicity, low-cost fabrication, wide spectrum range of operation, and band properties of the perfect absorber, the proposed multi-featured perfect absorber surfaces are promising for many applications. These include sensing devices, surface enhanced infrared absorption applications, solar cells, meta-materials, frequency selective sensors and modulators. © 2016 IOP Publishing Ltd.Item Open Access Silicon-Germanium multi-quantum well photodetectors in the near infrared(Optical Society of American (OSA), 2012) Onaran, E.; Onbasli, M. C.; Yesilyurt, A.; Yu, H. Y.; Nayfeh, A. M.; Okyay, Ali KemalSingle crystal Silicon-Germanium multi-quantum well layers were epitaxially grown on silicon substrates. Very high quality films were achieved with high level of control utilizing recently developed MHAH epitaxial technique. MHAH growth technique facilitates the monolithic integration of photonic functionality such as modulators and photodetectors with low-cost silicon VLSI technology. Mesa structured p-i-n photodetectors were fabricated with low reverse leakage currents of ∼10 mA/cm2 and responsivity values exceeding 0.1 A/W. Moreover, the spectral responsivity of fabricated detectors can be tuned by applied voltage. © 2012 Optical Society of America.Item Open Access Triangular metallic gratings for large absorption enhancement in thin film Si solar cells(Optical Society of American (OSA), 2012) Battal, E.; Yogurt, T.A.; Aygun L.E.; Okyay, Ali KemalWe estimate high optical absorption in silicon thin film photovoltaic devices using triangular corrugations on the back metallic contact. We computationally show 21.9% overall absorptivity in a 100-nmthick silicon layer, exceeding any reported absorptivity using single layer gratings placed on the top or the bottom, considering both transverse electric and transverse magnetic polarizations and a wide spectral range (280 - 1100 nm). We also show that the overall absorptivity of the proposed scheme is relatively insensitive to light polarization and the angle of incidence. We also discuss the implications of potential fabrication process variations on such a device. © 2012 Optical Society of America.