Browsing by Subject "polymerization"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study(Elsevier BV, 2010) Odaci, D.; Kahveci, M.U.; Sahkulubey, E.L.; Ozdemir, C.; Uyar, Tamer; Timur, S.; Yagci Y.In situ synthesis of poly(ethylene glycol) (PEG) hydrogels containing gold nanoparticles(AuNPs) and glucose oxidase (GOx) enzyme by photo-induced electron transfer process was reported here and applied in electrochemical glucose biosensing as the model system. Newly designed bionanocomposite matrix by simple one-step fabrication offered a good contact between the active site of the enzyme and AuNPs inside the network that caused the promotion in the electron transfer properties that was evidenced by cyclic voltammetryas well as higher amperometric biosensing responses in comparing with response signals obtained from the matrix without AuNPs. As well as some parameters important in the optimization studies such as optimum pH, enzyme loading and AuNP amount, the analytical characteristics of the biosensor (AuNP/GOx) were examined by the monitoring of chronoamperometric response due to the oxygen consumption through the enzymatic reaction at − 0.7 V under optimized conditions at sodium acetate buffer (50 mM, pH 4.0) and the linear graph was obtained in the range of 0.1–1.0 mM glucose. The detection limit (LOD) of the biosensor was calculated as 0.06 mM by using the signal to noise ratio of 3. Moreover, the presence of AuNPs was visualized by TEM. Finally, the biosensor was applied for glucose analysis for some beverages and obtained data were compared with HPLC as the reference method to test the possible matrix effect due to the nature of the samples.Item Open Access In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents(Institute of Physics Publishing, 2010) Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioǧlu H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B.316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. © 2010 IOP Publishing Ltd.