Browsing by Subject "device failure analysis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Liu W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanThis work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America.Item Open Access Low thermal-mass LEDs: Size effect and limits(Optical Society of American (OSA), 2014) Lu, S.; Liu W.; Zhang, Z.-H.; Tan, S.T.; Ju, Z.; Ji, Y.; Zhang X.; Zhang, Y.; Zhu, B.; Kyaw, Z.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanIn this work, low thermal-mass LEDs (LTM-LEDs) were developed and demonstrated in flip-chip configuration, studying both experimentally and theoretically the enhanced electrical and optical characteristics and the limits. LTM-LED chips in 25 × 25 μm2, 50 × 50 μm2, 100 × 100 μm2 and 200 × 200 μm2 mesa sizes were fabricated and comparatively investigated. Here it was revealed that both the electrical and optical properties are improved by the decreasing chip size due to the reduced thermal mass. With a smaller chip size (from 200 μm to 50 μm), the device generally presents higher current density against the bias and higher power density against the current density. However, the 25 × 25 μm2 device behaves differently, limited by the fabrication margin limit of 10 μm. The underneath mechanisms of these observations are uncovered, and furthermore, based on the device model, it is proven that for a specific flip-chip fabrication process, the ideal size for LTM-LEDs with optimal power density performance can be identified. ©2014 Optical Society of AmericaItem Open Access Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications(Optical Society of American (OSA), 2013) Günendi, M.C.; Tanyeli I.; Akgüç G.B.; Bek, A.; Turan, R.; Gülseren O.The effects of substrates with technological interest for solar cell industry are examined on the plasmonic properties of Ag nanoparticles fabricated by dewetting technique. Both surface matching (boundary element) and propagator (finite difference time domain) methods are used in numerical simulations to describe plasmonic properties and to interpret experimental data. The uncertainty on the locations of nanoparticles by the substrate in experiment is explained by the simulations of various Ag nanoparticle configurations. The change in plasmon resonance due to the location of nanoparticles with respect to the substrate, interactions among them, their shapes, and sizes as well as dielectric properties of substrate are discussed theoretically and implications of these for the experiment are deliberated. ©2013 Optical Society of America.