Browsing by Subject "Wave functions"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires(A I P Publishing LLC, 2015) Keleş, Ü.; Çakan, A.; Bulutay, C.We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.Item Open Access Electronic and optical properties of 4.2 μm"N" structured superlattice MWIR photodetectors(Elsevier, 2013) Salihoglu, O.; Hostut M.; Tansel, T.; Kutluer, K.; Kilic A.; Alyoruk, M.; Sevik, C.; Turan, R.; Ergun, Y.; Aydınlı, AtillaWe report on the development of a new structure for type II superlattice photodiodes that we call the "N" design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole-light hole (HH-LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2 μm at 120 K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5 × 10 -9 A under zero bias with corresponding R0A resistance of 1.5 × 104 Ω cm2 for the 500 × 500 μm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125 K with the BLIP detectivity (DBLIP) of 2.6 × 10 10 Jones under 300 K background and -0.3 V bias voltage. © 2012 Elsevier B.V. All rights reserved.Item Open Access Hartree-Fock approximation of bipolaron state in quantum dots and wires(Springer, 2010) Senger, R. T.; Kozal, B.; Chatterjee, A.; Erçelebi, A.The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational wave function that can conveniently conform to represent alternative ground state configurations of the two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby interacting polarons confined by the external potential. In the bipolaron state the electrons are found to be separated by a finite distance about a polaron size. We present the formation and stability criteria of bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the quantum wire geometry aggravates the formation of stable bipolarons.Item Open Access Landau levels in lattices with long - range hopping(American Physical Society, 2013) Atakişi, Hakan; Oktel, M. ÖzgürLandau levels (LLs) are broadened in the presence of a periodic potential, forming a barrier for accurate simulation of the fractional quantum Hall effect using cold atoms in optical lattices. Recently, it has been shown that the degeneracy of the lowest Landau level (LLL) can be restored in a tight-binding lattice if a particular form of long-range hopping is introduced. In this paper, we investigate three problems related to such quantum Hall parent Hamiltonians in lattices. First, we show that there are infinitely many long-range hopping models in which a massively degenerate manifold is formed by lattice discretizations of wave functions in the continuum LLL. We then give a general method to construct such models, which is applicable to not only the LLL but also higher LLs. We use this method to give an analytic expression for the hoppings that restores the LLL, and an integral expression for the next LL. We also consider whether the space spanned by discretized LL wave functions is as large as the space spanned by continuum wave functions, and we find the constraints on the magnetic field for this condition to be satisfied. Finally, using these constraints and the first Chern numbers, we identify the bands of the Hofstadter butterfly that correspond to continuum LLs.Item Open Access Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions(American Chemical Society, 2015) Delikanlı, S.; Akgül, M. Z.; Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Zhang, P.; Bozok, B.; Hernández-Martínez, P.L.; Christodoulides, J.; Cartwright, A. N.; Petrou, A.; Demir, Hilmi VolkanIn this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn2+-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn2+-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices. © 2015 American Chemical Society.Item Open Access Pairing and vortex lattices for interacting fermions in optical lattices with a large magnetic field(The American Physical Society, 2010) Zhai, H.; Umucalılar, R. O.; Oktel, M. Ö.We study the structure of a pairing order parameter for spin-1/2 fermions with attractive interactions in a square lattice under a uniform magnetic field. Because the magnetic translation symmetry gives a unique degeneracy in the single-particle spectrum, the pair wave function has both zero and finite-momentum components coexisting, and their relative phases are determined by a self-consistent mean-field theory. We present a microscopic calculation that can determine the vortex lattice structure in the superfluid phase for different flux densities. Phase transition from a Hofstadter insulator to a superfluid phase is also discussed.Item Open Access q-Gaussian trial function in high density Bose-Einstein condensates(Elsevier Science B.V., 2003) Erdemir, E.; Tanatar, BilalWe study the ground-state static properties of Bose-Einstein condensates in the high density regime using a trial wave function of the form of a q-Gaussian. The flexibility afforded by a q-Gaussian trial function yields very accurate ground-state energies for large number of particles. The resulting condensate wave function profiles are also in good agreement in the high density regime. Comparing our results with those of numerical calculations we provide information on the possible limitations of the q-Gaussian trial functions.Item Open Access Spherical wave representation of the dyadic Green's function for a spherical impedance boss at the edge of a perfectly conducting wedge(Electromagnetics Academy, 2012) Ghassemiparvin, Behnam; Altıntaş, AyhanIn this work, canonical problem of a scatterer at the edge of a wedge is considered and eigenfunction solution is developed. Initially, a dyadic Green's function for a spherical impedance boss at the edge of a perfect electrically conducting (PEC) wedge is obtained. Since scattering from objects at the edge is of interest, a three-dimensional Green's function is formulated in terms of spherical vector wave functions. First, an incomplete dyadic Green's function is expanded in terms of solenoidal vector wave functions with unknown coefficients, which is not valid in the source region. Unknown coefficients are calculated by utilizing the Green's second identity and orthogonality of the vector wave functions. Then, the solution is completed by adding general source correction term. Resulting Green's function is decomposed into two parts. First part is the dyadic Green's function of the wedge in the absence of the sphere and the second part represents the effects of the spherical boss and the interaction between the wedge and the scatterer. In contrast to cylindrical vector wave function expansions and asymptotic solutions which fail to converge in the paraxial region, proposed solution exhibits good convergence everywhere in space. Using the developed Green's function scattered field patterns are obtained for several impedance values and results are compared with those of a PEC spherical boss. Effects of the incident angle and surface impedance of the boss on the scattering pattern are also examined.Item Open Access Time dependent study of quantum bistabiliity(1995) Ecemiş, Mustafa IhsanThe analysis of quantum transport phenomena in small systems is a prominent topic of condensed matter physics due to its numerous technological applications. The current analytical theories are not adequate for studying realistic problems. Computational methods provide the most convenient approaches. Numerical integration of the time-dependent Schrödinger equation is one of the most powerful tools albeit the implementation of the blackbody boundary conditions is problematic. In this work, a novel method which render possible this implementation is described. A number of sample calculations are presented. The method is applied to several one- and two-dimensional systems. A description of the time-dependent behavior of quantum bistable switching is given.Item Open Access Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets(SPIE, 2017) Murphy, J. R.; Delikanlı, Savaş; Zhang, T.; Scrace, T. A.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Himli Volkan; Petrou, A.Colloidal semiconductor nanoplatelets (NPLs) are quasi 2D-nanostructures that are grown and processed inexpensively using a solution based method and thus have recently attracted considerable attention. We observe two features in the photoluminescence spectrum, suggesting two possible recombination channels. Their intensity ratio varies with temperature and two distinct temperature regions are identified; a low temperature region (10K < T < 90K) and a high temperature region (90K < T < 200K). This ratio increases with increasing temperature, suggesting that one recombination channel involves holes that are weakly localized with a localization energy of 0.043meV. A possible origin of these localized states are energy-variations in the xy-plane of the nanoplatelet. The presence of positive photoluminescence circular polarization in the magnetically-doped core/multi-shell NPLs indicates a hole-dopant exchange interaction and therefore the incorporated magnetic Manganese ions act as a marker that determines the location of the localized hole states.1 Time-resolved measurements show two distinct timescales (τfast and τslow) that can be modeled using a rate equation model. We identify these timescales as closely related to the corresponding recombination times for the channels. The stronger hole localization of one of these channels leads to a decreased electron-hole wave function overlap and thus a decreased oscillator strength and an increased lifetime. We show that we can model and understand the magnetic interaction of doped 2D-colloidal nanoplatelets which opens a pathway to solution processable spin controllable light sources. Copyright © 2017 SPIE.Item Open Access Two-electron singlet states in semiconductor quantum dots with Gaussian confinement: a single-parameter variational calculation(IOP, 2007) Boyacıoğlu, B.; Sağlam, M.; Chatterjee, AshokThe problem of two electrons in a three-dimensional quantum dot with Gaussian confinement is investigated for the singlet pairing by a variational method with a very simple wavefunction containing only a single parameter and a Jastrow-like factor, which is shown to yield fairly good results for deep confining potentials. The calculation is also performed for a few realistic semiconductor quantum dots and the phase diagrams for the two-electron singlet states are obtained for these materials. The pair density function is calculated for several parameter values and its peak positions are obtained as a function of the confinement length and the depth of the potential to study the behaviour of the electron-pair size. The size of the bound pair of electrons is also obtained by directly calculating the average distance between the two electrons in three different ways and compared with the pair correlation results. It is furthermore shown that, other properties remaining the same, the two-electron energy and the electron-pair size depend crucially on the effective electronic mass and the dielectric constant of the material. Finally, the ways of improving the wavefunction are also indicated.