Time dependent study of quantum bistabiliity
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
The analysis of quantum transport phenomena in small systems is a prominent topic of condensed matter physics due to its numerous technological applications. The current analytical theories are not adequate for studying realistic problems. Computational methods provide the most convenient approaches. Numerical integration of the time-dependent Schrödinger equation is one of the most powerful tools albeit the implementation of the blackbody boundary conditions is problematic. In this work, a novel method which render possible this implementation is described. A number of sample calculations are presented. The method is applied to several one- and two-dimensional systems. A description of the time-dependent behavior of quantum bistable switching is given.