Browsing by Subject "Vanillin"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Cyclodextrin functionalized nanofibers via electrospinning(2014) Çelebioğlu, AslıElectrospinning is a commonly studied and widely applied technique for generating nanofibers, with a diameter ranging from several tens of nanometers to a few micrometers. The low-cost, simple set-up, relatively high production rate and reproducibility increase the interests on this method in both academia and industry. Electrospun nanofibers are produced from a broad range of materials with extremely high surface area, very light-weight, nano-porous features and distinct physical/mechanical properties. The general talk in this technique focuses on the production of nanofibers from polymer base materials. However, very recent studies demonstrated that, it is also possible to obtain nanofibers from non-polymeric systems. For this novel development in electrospinning researches, we have achieved to generate nanofibers from cyclodextrins (CD) without using a polymeric template. CD are cyclic oligosaccharides consisting of α-(1,4)-linked glucopyranose units. The truncated cone shape structure of CD provides a favorable place for various kinds of organic molecules to form non-covalent host-guest inclusion complexes (IC). The enhancements and progressing at the guest molecules property and situation, creating with the inclusion complexation, make CD applicable in variety of areas including filtration, pharmaceuticals, cosmetics, functional foods, textiles, analytic chemistry etc. In this thesis, we report on the electrospinning of CD nanofibers, represent their functionalization and potential applications. Firstly, we produced CD nanofibers from three different chemically modified CD types (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)). Afterwards, the electrospinning of native CD (α-CD, β-CD and γ-CD) nanofibers was achieved. The molecular entrapment capability of CD nanofibers was shown by capturing toxic volatile organic compounds (VOCs) from the surrounding. As the next step, the polymer-free nanofibers were obtained from the cyclodextrin inclusion complexes (CD-IC) with antibacterial agent, vanillin and essential oils. Here, we have also indicated applicability of CD-IC nanofibers as a result of antibacterial test. The functionalization of the CD nanofibers was continued with the green and one-step synthesis of metal nanoparticles (Ag-NP, Au-NP and Pd-NP) incorporated nanofibers, in which CD were used as reducing, stabilizing agent and fiber template. Even, the antibacterial, SERS and catalyst potential of these CD based nanofibers were demonstrated for the related nanoparticles. Our research is expanded to a new stage by the production of insoluble poly-CD nanofibers. We have worked on different crosslinking agents to attain insoluble poly-CD nanofibers with uniform morphology. After the optimization of poly-CD nanofibers, the most durable polyCD nanowebs were selected for further analysis and evaluation of the filtration performance in liquid environment. Within poly-CD nanofibers, we have eliminated the solubility challenge of CD nanofibers that restrict their usage. So, we assume that, poly-CD nanofibers will lead-up to generation of new advances for practices of CD nanofibers. All studies showed that, the self-assembly and self-aggregation property of CD are the prior requirements for the electrospinnability of these small molecules. To conclude, very intriguing materials were obtained by integrating large surface area of nanofibers with specific host-guest inclusion complexation capability and non-toxic, biocompatible nature of the CD. Moreover, CD molecules, which are generally used in the powder form, were rendered into more applicable nanofibers form that will represent ease during their usage.Item Open Access Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin(2012-08) Kayaci, F.; Uyar, TamerWe produced functional nanowebs, containing vanillin, having prolonged shelf-life and high temperature stability facilitated by cyclodextrin (CD) inclusion complexation. Polyvinyl alcohol (PVA) nanowebs incorporating vanillin/cyclodextrin inclusion complex (vanillin/CD-IC) were produced via electrospinning technique. The vanillin/CD-IC was prepared with three types of CDs; α-CD, β-CD and γ-CD to find out the most favourable CD type for the stabilization of vanillin. PVA/vanillin/CD-IC nanofibres, having fibre diameters around ∼200 nm, were successfully electrospun from aqueous mixture of PVA and vanillin/CD-IC. Our results indicated that vanillin with enhanced durability and high temperature stability was achieved for PVA/vanillin/CD-IC nanowebs due to complexation of vanillin with CD, whereas the PVA nanofibres without CD-IC could not effectively preserve the vanillin. Additionally, we observed that PVA/vanillin/γ-CD-IC nanoweb was more effective for the stabilization and slow release of vanillin suggesting that the strength of interaction between vanillin and the γ-CD cavity is stronger when compared to α-CD and β-CD. © 2012 Elsevier Ltd. All rights reserved.Item Open Access Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property(Royal Society of Chemistry, 2016) Celebioglu A.; Kayaci-Senirmak, F.; Ipek, S.; Durgun, Engin; Uyar, TamerVanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1:1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin:CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced antioxidant property, etc.Item Open Access Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability(American Chemical Society, 2011) Kayaci, F.; Uyar, TamerThis study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and 1H NMR studies. Moreover, 1H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin/CD physical mixtures. The amount of vanillin released with increasing temperature was lowest for vanillin/γ-CD IC and highest for vanillin/α-CD IC, suggesting that the strength of interaction between vanillin and the CD cavity was in the order γ-CD > β-CD > α-CD for solid vanillin/CD ICs. © 2011 American Chemical Society.