Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and 1H NMR studies. Moreover, 1H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin/CD physical mixtures. The amount of vanillin released with increasing temperature was lowest for vanillin/γ-CD IC and highest for vanillin/α-CD IC, suggesting that the strength of interaction between vanillin and the CD cavity was in the order γ-CD > β-CD > α-CD for solid vanillin/CD ICs. © 2011 American Chemical Society.