Browsing by Subject "Ultraviolet spectroscopy"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Dispersion of multi-walled carbon nanotubes in an aqueous medium by water-dispersible conjugated polymer nanoparticles(2010) Baykal, B.; Ibrahimova, V.; Er, G.; Bengü, E.; Tuncel, D.Vertically aligned multi-walled carbon nanotubes (MWCNTs) synthesized by the alcohol catalytic CVD (ACCVD) technique are dispersed in water with the aid of water-dispersible conjugated polymer nanoparticles (CPNs). The interactions between CPNs and CNTs are studied with spectroscopy (UV-Vis, fluorescence and Raman) and electron microscopy techniques are used to confirm attachment of CPNs to the CNT sidewalls.Item Open Access Effect of chalcogens on electronic and photophysical properties of vinylene-based diketopyrrolopyrrole copolymers(American Chemical Society, 2015) Dhar, J.; Mukhopadhay, T.; Yaacobi-Gross, N.; Anthopoulos, T. D.; Salzner, U.; Swaraj, S.; Patil, S.Three vinylene linked diketopyrrolopyrrole based donor−acceptor (D−A) copolymers have been synthesized with phenyl, thienyl, and selenyl units as donors. Optical and electronic properties were investigated with UV−vis absorption spectroscopy, cyclic voltammetry, near edge X-ray absorption spectroscopy, organic field effect transistor (OFET) measurements, and density functional theory (DFT) calculations. Optical and electrochemical band gaps decrease in the order phenyl, thienyl, and selenyl. Only phenyl-based polymers are nonplanar, but the main contributor to the larger band gap is electronic, not structural effects. Thienyl and selenyl polymers exhibit ambipolar charge transport but with higher hole than electron mobility. Experimental and theoretical results predict the selenyl system to have the best transport properties, but OFET measurements prove the thienyl system to be superior with p-channel mobility as high as 0.1 cm2 V−1 s −1.Item Open Access Electronic structure of conducting organic polymers: insights from time-dependent density functional theory(John Wiley & Sons Ltd., 2014) Salzner, U.Conducting organic polymers (COPs) became an active field of research after it was discovered how thin films rather than insoluble infusible powders can be produced. The combination of the properties of plastics with those of semiconductors opened the research field of organic electronics. COPs share many electronic properties with inorganic semiconductors, but there are also major differences, e.g., the nature of the charge carriers and the amount of the exciton binding energy. Theoretical analysis has been used to interpret experimental observations early on. The polaron model that was developed from one-electron theories is still the most widely used concept. In the 1990s, time-dependent density functional theory (TDDFT) became available for routine calculations. Using TDDFT, electronic states of long oligomers can be calculated. Now UV spectra of neutral and oxidized or reduced species can be compared with in situ UV spectra recorded during doping. Likewise states of cations can be used to model photoelectron spectra. Analysis of states has resolved several puzzles which cannot be understood with the polaron model, e.g., the origin of the dual absorption band of green polymers and the origin of a 'vestigial neutral band' upon doping of long oligomers. DFT calculations also established that defect localization is not crucial for spectral changes observed during doping and that there are no bound bipolarons in COPs.Item Open Access Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide(American Chemical Society, 2003) Dag, Ö.; Alayoǧlu, S.; Tura, C.; Çelik, Ö.Lyotropic liquid-crystalline (LLC), transition metal salt: oligo(ethylene oxide) nonionic surfactant (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm), systems have been studied by means of diffraction, microscopy, and spectroscopy to elucidate the structural, thermal, and templating properties. In the system, the lyotropic salts of transition metal aqua complexes, such as chlorides and sulfates, are insoluble and do not form a LC phase in CnEOm-type nonionic surfactants. However, the transition metal aqua complexes of nitrates and perchlorates are soluble and form 2D and 3D hexagonal and cubic mesophases. These phases are stable in a very broad range of salt:surfactant mole ratios (1.0 and 3.6). The nitrate salts form a hexagonal mesophase. However, in high nitrate salt concentrations (above 3.2 salt:surfactant mole ratio), the salt crystals are either insoluble or the salt:surfactant mixtures are in a cubic mesophase. The structure and thermal properties of the new system are determined by the solubility of the transition metal salts, the concentration of the salt, and the surfactant type. The LC [Cd(H2O)4](NO3)2: C12EO10 mesophase has been reacted with H2S gas to produce solid mesostructured CdS (meso-CdS). The meso-CdS particles are spherical in morphology and are made up of hierarchical organization of 2-4-nm CdS particles. The salt:surfactant LLC systems and the solid meso-CdS have been investigated using polarized optical microscopy, X-ray diffraction, Fourier transform infrared, Fourier transform Raman, and UV-vis absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy.Item Open Access Methyldecalin hydrocracking over palladium/zeolite-X(Elsevier Science Ltd, Exeter, United Kingdom, 2000) Sayan, S.; Demirel, B.; Paul, J.Hydrocracking of methyldecalin over Pd/REX has been studied with surface sensitive techniques in the critical temperature range 325– 3508C. Results from in situ characterization of adsorbed species, and post-reaction analysis of the catalyst surface by infrared and photoemission spectroscopies, were related to product distributions. The results are discussed in light of quantum chemical calculations of free and catalyst bound intermediates, following ring-opening reactions. Liquid and gaseous products were detected by infrared and UV/Vis spectroscopies. Apparent activation energies of product formation hydrogen consumption, over a broader temperature range, were derived from previous autoclave experiments. An increase in temperature, 325–3508C, results in a shift from preferred cracking products to aromatics, an enhanced level of light hydrocarbon off-gases, and a higher coverage of carbonaceous residues. The increased level of carbonaceous residues is accompanied by a lowered coverage of the reactant, at the surface. The altered product distribution can be characterized by apparent single activation energies, valid from 300 to 4508C. Methane and aromatics show a similar rapid increase with temperature, hydrogen consumption a more timid increase, indicating a reaction limited by diffusion, and cycloalkane production a modest inverse temperature dependence. Fully hydrogenated ring-opening products represent valuable fuel components, but hydrogen deficiency can instead lead to chemisorbed precursors to coke. Our calculations show that cyclohexane, 1,2-diethyl, 3-methyl has a lower heat of formation than the corresponding surface intermediates, but a small enthalpy advantage can easily be countered by entropy effects at higher temperatures. This balance is critical to the formation of preferred products, instead of catalyst deactivation and aromatics. The theoretical results further show that surface intermediates, where the terminating hydrogen is replaced by a C–O bond, have distinct vibrations around 1150 cm21. q2000 Elsevier Science Ltd. All rights reserved.Item Open Access Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performance(American Chemical Society, 2017-09) Pradhan, A. C.; Uyar, TamerThe one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co3O4-CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co3O4-CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co3O4-CuO NFs but also single mesoporous Co3O4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co3O4 nanofibers framework (Co3O4-CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co3O4-CuO NFs is due to the internal charge transfer between Co2+ to Co3+ and Cu2+, proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co3O4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co3O4-CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co3O4-CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co3O4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co3O4-CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.Item Open Access Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation(2009) Ozkaraoglu, E.; Tunc, I.; Süzer, ŞefikAu and Au-Pt alloy nanoparticles are prepared and patterned at room temperature within the PMMA polymer matrix by the action of 254 nm UV light or X-rays. The polymer matrix enables us to entangle the kinetics of the photochemical reduction from the nucleation and growth processes, when monitored by UV-vis spectroscopy. Accordingly, increase of the temperature to 50 °C of the reaction medium increases the nucleation and growth rates of the nanoparticle formation by more than one order of magnitude, due to enhanced diffusion and nucleation at the higher temperature, but has no effect on the photochemical reduction process. Presence of Pt ions also increases the same rate, but by a factor two only. Similar photochemical reduction and particle growth take also place within the PMMA matrix, when these metal ions are subjected to prolonged exposure to X-rays, as evidenced by XPS analysis. Both angle-resolved and charge-contrast measurements using XPS reveal that the resultant Au and Pt species are in close proximity to each other, indicating the Au-Pt alloy formation to be the most likely case.Item Open Access Solventless acid-free synthesis of mesostructured titania: nanovessels for metal complexes and metal nanoclusters(Wiley - V C H Verlag GmbH & Co. KGaA, 2003) Dag, Ö.; Soten, I.; Çelik, Ö.; Polarz, S.; Coombs, N.; Ozin, G. A.A new and highly reproducible method to obtain mesostructured titania materials is introduced in this contribution. The meso-structured titania is obtained by employing self-assembled structures of non-ionic alkyl-poly(ethylene oxide) surfactants as templates. The materials are produced without additional solvents such as alcohols, or even water. Only the titanium(iv) ethoxide and the surfactant (C12EO10) are needed. Water, in the form of that attached to the surfactant and from the atmosphere, induces growth of titania nanoclusters in the synthesis sol. It is indicated that these nanoclusters interact with the surfactant EO-head groups to form a new titanotropic amphiphile. The new amphiphiles self-assemble into titanium nanocluster-surfactant hybrid lyotropic phases, which are transformed to the final mesostructured materials by further condensation of the titania network. The titania materials can be obtained also with noble-metal particles immobilized in the mesostructured framework. It is seen that when different metal salts are used as the metal precursors, different interactions with the titania walls are found. The materials are characterized by X-ray diffraction (XRD), polarization optical microscopy (POM), transmission electron microscopy (TEM), UV-vis spectroscopy, and micro-Raman analysis.Item Open Access Sorption of phenol and radioactive cesium onto surfactant modified insolubilized humic acid(2010) Celebi, O.; Erten, H. N.In this study, the sorption behavior of two important contaminants, phenol and radioactive cesium (137Cs), onto surfactant modified insolubilized humic acid (SMIA) were investigated as a function of time, sorbate concentration utilizing the radiotracer method and UV-Vis spectroscopy. Phenol sorption process was well described by both Freundlich and Tempkin type isotherms, and cesium sorption was described by Freundlich and Dubinin-Radushkevich isotherms. It was found that SMIA adsorbs both cations and phenolic substances. Kinetic studies indicated that adsorption behavior of phenol obey the pseudo second order rate law. FTIR spectroscopic technique was used to understand the structural changes during modification process with surfactants.Item Open Access Spectroelectrochemistry of potassium ethylxanthate, bis(ethylxanthato)nickel(II) and tetraethylammonium tris(ethylxanthato)-nickelate(II)(Royal Society of Chemistry, 2001) Dag, Ö.; Yaman, S. Ö.; Önal, A. M.; Isci, H.Electrochemical and chemical oxidation of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− have been studied by CVand in situ UV-VIS spectroscopy in acetonitrile. Cyclic voltammograms of S2COEt− and Ni(S2COEt)2 display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to an Ag/Ag+ (0.10 M) electrode. However, the cyclic voltammogram of [Ni(S2COEt)3]− displays one reversible (−0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, referenced to an Ag/Ag+ electrode. The low temperature EPR spectrum of the oxidatively electrolyzed solution of (NEt4)[Ni(S2COEt)3] indicates the presence of [NiIII(S2COEt)3], which disproportionates to Ni(S2COEt)2, and the dimer of the oxidized ethylxanthate ligand, (S2COEt)2 ((S2COEt)2 = C2H5OC(S)SS(S)COC2H5), with a second order rate law. The final products of constant potential electrolysis at the first oxidation peak potentials of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− are (S2COEt)2; Ni2+(sol) and (S2COEt)2; and Ni(S2COEt)2 and (S2COEt)2, respectively. The chemical oxidation of S2COEt− to (S2COEt)2, and [Ni(S2COEt)3]− to (S2COEt)2 and Ni(S2COEt)2 were also achieved with iodine. The oxidized ligand in the dimer form can be reduced to S2COEt− with CN− in solution.Item Open Access Spectroscopic evaluation of DNA–borate Interactions(Humana Press Inc., 2015) Ozdemir, A.; Sarioglu O. F.; Tekinay, T.We describe the binding characteristics of two natural borates (colemanite and ulexite) to calf thymus DNA by UV–vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and a competitive DNA binding assay. Our results suggest that colemanite and ulexite interact with calf thymus DNA under a non-intercalative mode of binding and do not alter the secondary structure of the DNA helix. The FT-IR spectroscopy results indicate that the two borates might interact with DNA through sugar-phosphate backbone binding. © 2015, Springer Science+Business Media New York.Item Open Access Theoretical modeling of the doping process in polypyrrole by calculating UV/Vis absorption spectra of neutral and charged oligomers(2008) Okur, S.; Salzner, U.Changes in absorption spectra during doping of oligopyrroles were investigated with time-dependent density functional theory on optimized structures of neutral, singly, and doubly charged pyrrole oligomers with up to 24 rings. In the absence of counterions, defects are delocalized. Counterions induce localization. For dications two polarons on the same chain are preferred over a bipolaren. Intragap absorptions arise in charged species, no matter whether defects are localized or delocalized. Cations and dications give rise to two sub-band transitions. The cation peaks have lower energies than those of dications. The first excitations of cations have lower oscillator strengths than the second; for dications the second peak is weaker than the first. For very long oligomers, the second sub-band absorption vanishes and a third one appears at higher energy. The behavior of pyrrole oligomers is analogous to that of thiophene oligomers. Theoretical UV spectra for cations and dications of short oligomers (six to eight rings) match experimental spectra of polypyrrole at low and at high doping levels, respectively. The error in the theoretical calculations is about 0.4 eV, slightly larger than for thiophene oligomers at the same level of theory. © 2008 American Chemical Society.Item Open Access Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2(Springer Verlag, 2016-02) Senthamizhan A.; Balusamy, B.; Aytac Z.; Uyar, TamerWe report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.