BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Ultraviolet radiation"

Filter results by typing the first few letters
Now showing 1 - 14 of 14
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Doping of 2-Cl-PANI/PVC films by exposure to UV, γ-rays and e-beams
    (Elsevier Sequoia SA, Lausanne, Switzerland, 2000) Sevil, U. A.; Güven, O.; Birer, Ö.; Süzer, Ş.
    2-Chloro-polyaniline (2-Cl-PANI) is chemically prepared in its non-conducting (Emeraldine Base, EB) form and dissolved together with polyvinylchloride (PVC) in THF for casting into thin (10-50 μm) composite films. The electrical conductivity of these films increases by more than four orders of magnitude (from 10-6 to 10-2 S/cm) when they are exposed to UV, γ-rays and e-beams. This is attributed to the dehydrochlorination (loss of HCl) of PVC by exposure to energetic particles and subsequent doping of the 2-Cl-PANI (i.e., conversion to Emeraldine Salt, ES) by the in-situ-created HCl. The doped films can also be returned to their undoped form by further exposure to NH3 vapours. The UV (or other particles)-induced doping/NH3 undoping cycles can be repeated several times until almost total dehydrochlorination of the PVC matrix. UV-Vis-NIR, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopic (XPS) techniques are employed to follow the changes in the composite films upon doping by exposure to these energetic particles.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film
    (Springer, 2012-07-27) Alkis, S.; Alevli, M.; Burzhuev, S.; Vural, H. A.; Okyay, Ali Kemal; Ortaç, B.
    We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9-25.3, 5.45-34.8, 3.24-36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High-performance solar-blind AlGaN photodetectors
    (IEEE, 2004) Özbay, Ekmel; Bıyıklı, Necmi; Kimukin, İbrahim; Tut, Turgut; Kartaloğlu, Tolga; Aytür, Orhan
    High-performance aluminum gallium nitride (AlGaN)-based solar-blind (SB) photodetectors were demonstrated using different device structures. The Al x-Ga1-xN layers structure were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire structures. n+ and p+ ohmic contacts on GaN were formed with non-annealed titanium (Ti)/aluminum (Al) and nickel (Ni)/ gold (Au) alloys. Spectral UV photoresponse measurements confirmed the solar-blind response of the devices.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Highly sensitive determination of 2, 4, 6-trinitrotoluene and related byproducts using a diol functionalized column for high performance liquid chromatography
    (Public Library of Science, 2014) Gumuscu, B.; Erdogan, Z.; Güler, Mustafa O.; Tekinay, T.
    In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 μg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. © 2014 Gumuscu et al.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Low dark current metal-semiconductor-metal photodiodes based on semi-insulating GaN
    (AIP Publishing LLC, 2006) Bütün, S.; Gökkavas, M.; Yu, H.; Özbay, Ekmel
    Metal-semiconductor-metal photodetectors on semi-insulating GaN templates were demonstrated and compared with photodetectors fabricated on regular GaN templates. Samples were grown on a metal organic chemical vapor deposition system. Devices on semi-insulating template exhibited a dark current density of 1.96 × 10-10 A/cm2 at 50 V bias, which is four orders of magnitude lower compared with devices on regular template. Device responsivities were 101.80 and 88.63 A/W at 50 V bias for 360 nm ultraviolet illumination for semi-insulating and regular templates, respectively. Incident power as low as 3 pW was detectable using the devices that were fabricated on the semi-insulating template. © 2006 American Institute of Physics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanosecond sum-frequency generating optical parametric oscillator using simultaneous phase matching
    (Optical Society of American (OSA), 2005) Figen, Z.G.; Aytür O.
    We report a nanosecond sum-frequency generating optical parametric oscillator based on a single KTiOAsO4 crystal that is simultaneously phase matched for optical parametric generation and sum-frequency generation. Pumped at a wavelength of 1064 nm by a Q-switched Nd:YAG laser, this device produces 10.4-ns-long 8.3 mJ red pulses at a wavelength of 627 nm with 21% energy conversion efficiency. This device provides a simple and efficient method for converting high energy Nd:YAG lasers to a red wavelength. © 2005 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Near-UV InGaN/GaN-based dual-operation quantum optoelectronic devices
    (SPIE, 2007) Özel, Tuncay; Sarı, Emra; Nizamoğlu, Sedat; Demir, Hilmi Volkan
    We present a novel dual-operation InGaN/GaN based quantum optoelectronic device (QOD) that operates as a quantum electroabsorption modulator in reverse bias and as a light emitter in forward bias in the spectral range of near-ultraviolet (UV). Here we report the design, epitaxial growth, fabrication, and characterization of such QODs that incorporate ∼2-3 nm thick InGaN/GaN quantum structures for operation between 380 nm and 400 nm. In reverse bias, our QODs show an optical absorption coefficient change of ∼14000 cm -1 with a reverse bias of 9 V (corresponding to ∼40 cm -1 absorption coefficient change for 1 V/μm field swing) at 385 nm, reported for the first time for InGaN/GaN quantum structures in the near-UV range. In forward bias, though, our QODs exhibit optical electroluminescence spectrum centered around 383 nm with a full width at half maximum of 20 nm and photoluminescence spectrum centered around 370 nm with a full width at half maximum of 12 nm. This dual operation makes such quantum optoelectronic devices find a wide range of optoelectronics applications both as an electroabsorption modulator and a light emitting diode (LED).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photonic devices and systems embedded with nanocyrstals
    (SPIE, 2006) Demir, Hilmi Volkan; Soğancı, Ibrahim Murat; Mutlugun, Evren; Tek, Sümeyra; Huyal, Ilkem Ozge
    We review our research work on the development of photonic devices and systems embedded with nanocyrstals for new functionality within EU Phoremost Network of Excellence on nanophotonics. Here we report on CdSe/ZnS nanocrystalbased hybrid optoelectronic devices and systems used for scintillation to enhance optical detection and imaging in the ultraviolet range and for optical modulation via electric field dependent optical absorption and photoluminescence in the visible. In our collaboration with DYO, we also present photocatalytic TiO2 nanoparticles incorporated in solgel matrix that are optically activated in the ultraviolet for the purpose of self-cleaning.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photosensitization of PVC dehydrochlorination by hydroquinone for improved optical and electrical properties
    (Elsevier, 2004) Balci, S.; Birer, O.; Süzer, Şefik
    Hydroquinone (HQ) is incorporated into the PVC films containing methyl violet or polyaniline (emeraldine base) for sensitizing the UV induced optical or electrical changes, respectively. It is observed that introduction of a small amount (less than 10% by weight) of HQ not only brings the dehydrochlorination onset down to 310 nm but also sensitizes the process by more than one order of magnitude as well as leading to strong polyene formation. UV-Vis-NIR spectroscopy is used to characterize the changes and investigate the mechanism. Accordingly, it is postulated that this HQ assisted photo-dehydrochlorination involves predominantly the formation of an excited triplet via an efficient intersystem crossing in HQ followed by abstraction of hydrogen from the poly(vinyl chloride) to initiate a zipping reaction in the PVC matrix. © 2004 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV
    (Optical Society of American (OSA), 2008) Mutlugun, E.; Soganci I.M.; Demir, Hilmi Volkan
    We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe)ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV. © 2008 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation
    (2009) Ozkaraoglu, E.; Tunc, I.; Süzer, Şefik
    Au and Au-Pt alloy nanoparticles are prepared and patterned at room temperature within the PMMA polymer matrix by the action of 254 nm UV light or X-rays. The polymer matrix enables us to entangle the kinetics of the photochemical reduction from the nucleation and growth processes, when monitored by UV-vis spectroscopy. Accordingly, increase of the temperature to 50 °C of the reaction medium increases the nucleation and growth rates of the nanoparticle formation by more than one order of magnitude, due to enhanced diffusion and nucleation at the higher temperature, but has no effect on the photochemical reduction process. Presence of Pt ions also increases the same rate, but by a factor two only. Similar photochemical reduction and particle growth take also place within the PMMA matrix, when these metal ions are subjected to prolonged exposure to X-rays, as evidenced by XPS analysis. Both angle-resolved and charge-contrast measurements using XPS reveal that the resultant Au and Pt species are in close proximity to each other, indicating the Au-Pt alloy formation to be the most likely case.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Spectroscopic investigation of onset and enhancement of electrical conductivity in PVC/PANI composites and blends by γ-ray or UV irradiation
    (American Chemical Society, 1998) Sevil, U. A.; Güven, O.; Süzer, S.
    Electrical conductivity of blends and composites of poly(vinyl chloride) (PVC) with nonconducting polyaniline (PANI) increases when they are subjected to γ-rays or UV radiation. This is attributed to a radiation-induced dehydrochlorination (loss of HCl) of PVC, which in turn oxidizes (dopes) PANI within the PVC matrix causing the increase in electrical conductivity of these films. XPS, UV - vis - NIR and FTIR spectroscopic methods are used to characterize and verify this novel process. After the films are subjected to γ-rays (or UV radiation) the intensities in the XPS spectra of both -N+- and Cl- peaks increase, confirming the increase in charged species within the PVC matrix. Similar observations attributable to radiation-induced electrical conductivity are also observed in both the UV - vis - NIR and FTIR spectra. This radiation-induced conductivity can also be reversed to some extent by further exposing the films to NH3 vapors, where the oxidized centers are partially reduced (undoped). Several UV/NH3/UV cycles can be performed without much loss in conductivity- and/or conductivity-related spectroscopic features. The onset of the photoinduced conductivity both in PVC-only and PVC/PANI composite films is determined to be 300 nm (4.1 eV), which coincides with the first UV absorption band of PVC.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber
    (Royal Society of Chemistry, 2015) Senthamizhan, A.; Celebioglu A.; Uyar, Tamer
    In this communication, a fluorescent gold cluster incorporated electrospun nanofibrous membrane and single nanofiber for selective and sensitive detection of TNT at sub-ppt level are demonstrated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    UV-induced acid-base chemistry within the PVC matrix: Wavelength selectivity
    (ACS, Washington, DC, United States, 2000) Süzer, Şefik; Birer O.
    The dehydrochlorination of polyvinyl chlorides (PVC) is investigated by using it as an in-situ Bronsted acid source, in blends with pH indicators for optical changes, and with basic forms of conducting polymers to determine the electrical conductivity changes. The in-situ created HCl was responsible for the optical and electrical conductivity changes in pH indicator+PVC and nonconducting electroactive polymer (PANI) or PANI+PVC systems. It was possible to sensitized PVC and trigger polyene formation at higher wavelengths. The nature of polyene formation was strongly dependent on the wavelength of irradiation as well as the amount of energy transferred to the matrix from the sensitizer.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback