Browsing by Subject "UV photodetectors"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Atomic layer deposited HfO2 based metal insulator semiconductor GaN ultraviolet photodetectors(Elsevier BV, 2014) Kumar, M.; Tekcan, B.; Okyay, Ali KemalA report on GaN based metal insulator semiconductor (MIS) ultraviolet (UV) photodetectors (PDs) with atomic layer deposited (ALD) 5-nm-thick HfO2 insulating layer is presented. Very low dark current of 2.24 × 10-11 A and increased photo to dark current contrast ratio was achieved at 10 V. It was found that the dark current was drastically reduced by seven orders of magnitude at 10 V compared to samples without HfO2 insulating layer. The observed decrease in dark current is attributed to the large barrier height which is due to introduction of HfO2 insulating layer and the calculated barrier height was obtained as 0.95 eV. The peak responsivity of HfO2 inserted device was 0.44 mA/W at bias voltage of 15 V.Item Open Access Hollow-cathode plasma-assisted atomic layer deposition: A novel route for low-temperature synthesis of crystalline III-nitride thin films and nanostructures(IEEE, 2015) Bıyıklı, Necmi; Ozgit-Akgun, Çağla; Goldenberg, Eda; Haider, Ali; Kızır, Seda; Uyar, Tamer; Bolat, Sami; Tekcan, Burak; Okyay, Ali KemalHollow cathode plasma-assisted atomic layer deposition is a promising technique for obtaining III-nitride thin films with low impurity concentrations at low temperatures. Here we report our efforts on the development of HCPA-ALD processes for III-nitrides together with the properties of resulting thin films and nanostructures. The content will further include nylon 6,6/GaN core/shell and BN/AlN bishell hollow nanofibers, proof-of-concept thin film transistors and UV photodetectors fabricated using HCPA-ALD-grown GaN layers, as well as early results for InN thin films deposited by HCPA-ALD technique. © 2015 IEEE.Item Open Access Low-temperature hollow cathode plasma-assisted atomic layer deposition of crystalline III-nitride thin films and nanostructures(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Ozgit Akgun, C.; Goldenberg, E.; Bolat, S.; Tekcan, B.; Kayaci, F.; Uyar, Tamer; Okyay, Ali Kemal; Bıyıklı, NecmiHollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) is a promising technique for obtaining III-nitride thin films with low impurity concentrations at low temperatures. Here we report our previous and current efforts on the development of HCPA-ALD processes for III-nitrides together with the properties of resulting thin films and nanostructures. The content further includes nylon 6,6-GaN core-shell nanofibers, proof-of-concept thin film transistors and UV photodetectors fabricated using HCPA-ALD-grown GaN layers, as well as InN thin films deposited by HCPA-ALD using cyclopentadienyl indium and trimethylindium precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access LSPR enhanced MSM UV photodetectors(IOP Publishing, 2012-10-18) Butun, S.; Cinel, N. A.; Özbay, EkmelWe fabricated localized surface plasmon resonance enhanced UV photodetectors on MOCVD grown semi-insulating GaN. Plasmonic resonance in the UV region was attained using 36nm diameter Al nanoparticles. Extinction spectra of the nanoparticles were measured through spectral transmission measurements. A resonant extinction peak around 300nm was obtained with Al nanoparticles. These particles gave rise to enhanced absorption in GaN at 340nm. Spectral responsivity measurements revealed an enhancement factor of 1.5. These results provided experimental verification for obtaining field enhancement by using Al nanoparticles on GaN.