Browsing by Subject "Tumor Cells, Cultured"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Yildiz, S.; Alpdundar, E.; Gungor, B.; Kahraman, T.; Bayyurt, B.; Gursel, I.; Gursel, M.Recognition of pathogen-derived nucleic acids by immune cells is critical for the activation of protective innate immune responses. Bacterial cyclic dinucleotides (CDNs) are small nucleic acids that are directly recognized by the cytosolic DNA sensor STING (stimulator of IFN genes), initiating a response characterized by proinflammatory cytokine and type I IFN production. Strategies to improve the immune stimulatory activities of CDNs can further their potential for clinical development. Here, we demonstrate that a simple complex of cylic-di-GMP with a cell-penetrating peptide enhances both cellular delivery and biological activity of the cyclic-di-GMP in murine splenocytes. Furthermore, our findings establish that activation of the TLR-dependent and TLR-independent DNA recognition pathways through combined use of CpG oligonucleotide (ODN) and CDN results in synergistic activity, augmenting cytokine production (IFN-α/β, IL-6, TNF-α, IP-10), costimulatory molecule upregulation (MHC class II, CD86), and antigen-specific humoral and cellular immunity. Results presented herein indicate that 3′3′-cGAMP, a recently identified bacterial CDN, is a superior stimulator of IFN genes ligand than cyclic-di-GMP in human PBMCs. Collectively, these findings suggest that the immune-stimulatory properties of CDNs can be augmented through peptide complexation or synergistic use with CpG oligonucleotide and may be of interest for the development of CDN-based immunotherapeutic agents.Item Open Access Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo(2005) Saydam O.; Glauser, D.L.; Heid I.; Turkeri G.; Hilbe, M.; Jacobs, A.H.; Ackermann, M.; Fraefel, C.In primary glioblastomas and other tumor types, the epidermal growth factor receptor (EGFR) is frequently observed with alterations, such as amplification, structural rearrangements, or overexpression of the gene, suggesting an important role in glial tumorigenesis and progression. In this study, we investigated whether posttranscriptional gene silencing by vector-mediated RNAi to inhibit EGFR expression can reduce the growth of cultured human gli36 glioma cells. To "knock down" EGFR expression, we have created HSV-1-based amplicons that contain the RNA polymerase III-dependent H1 promoter to express double-stranded hairpin RNA directed against EGFR at two different locations (pHSVsiEGFR I and pHSVsiEGFR II). We demonstrate that both pHSVsiEGFR I and pHSVsiEGFR II mediated knock-down of transiently transfected full-length EGFR or endogenous EGFR in a dose-dependent manner. The knock-down of EGFR resulted in the growth inhibition of human glioblastoma (gli36-luc) cells both in culture and in athymic mice in vivo. Cell cycle analysis and annexin V staining revealed that siRNA-mediated suppression of EGFR induced apoptosis. Overall HSV-1 amplicons can mediate efficient and specific posttranscriptional gene silencing. Copyright © The American Society of Gene Therapy.Item Open Access p53 mutation as a source of aberrant β-catenin accumulation in cancer cells(2002) Cagatay, T.; Ozturk, M.β-catenin is involved in both cell-cell interactions and wnt pathway-dependent cell fate determination through its interactions with E-cadherin and TCF/LEF transcription factors, respectively. Cytoplasmic/nuclear levels of β-catenin are important in regulated transcriptional activation of TCF/LEF target genes. Normally, these levels are kept low by proteosomal degradation of β-catenin through Axin1- and APC-dependent phosphorylation by CKI and GSK-3β. Deregulation of β-catenin degradation results in its aberrant accumulation, often leading to cancer. Accordingly, aberrant accumulation of β-catenin is observed at high frequency in many cancers. This accumulation correlates with either mutational activation of CTNNB1 (β-catenin) or mutational inactivation of APC and Axin1 genes in some tumors. However, there are many tumors that display β-catenin accumulation in the absence of a mutation in these genes. Thus, there must be additional sources for aberrant β-catenin accumulation in cancer cells. Here, we provide experimental evidence that wild-type β-catenin accumulates in hepatocellular carcinoma (HCC) cells in association with mutational inactivation of p53 gene. We also show that worldwide p53 and β-catenin mutation rates are inversely correlated in HCC. These data suggest that inactivation of p53 is an important cause of aberrant accumulation of β-catenin in cancer cells.Item Open Access Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives(Bentham Science Publishers B.V., 2015) Gurdal, E.E.; Buclulgan, E.; Durmaz I.; Cetin-Atalay, R.; Yarim, M.Synthesis, characterization and cytotoxic activities of ten benzothiazole-piperazine derivatives were reported. In vitro cytotoxic activities of compounds were screened against hepatocellular (HUH-7), breast (MCF-7) and colorectal (HCT-116) cancer cell lines by sulphorhodamine B assay. Based on the GI50 values of the compounds, most of the benzothiazole-piperazine derivatives are active against HUH-7, MCF-7 and HCT-116 cancer cell lines. Aroyl substituted compounds 1h and 1j were found to be the most active derivatives. In addition, further investigation of compounds 1h and 1j by Hoechst staining and FACS revealed that these compounds cause apoptosis by cell cycle arrest at subG1 phase. © 2015 Bentham Science Publishers.Item Open Access Synthesis of novel substituted purine derivatives and identification of the cell death mechanism(Elsevier Masson SAS, 2015) Demir, Z.; Guven, E.B.; Ozbey, S.; Kazak, C.; Atalay, R.C.; Tuncbilek, M.Novel substituted adenine and purine derivatives were designed and synthesized.Compound 36 displayed the greatest cytotoxic activity with IC50 less than 1 1/4M.36 induces senescence associated cell death, which was demonstrated with SA2-Gal assay. © 2014 Elsevier Masson SAS.