p53 mutation as a source of aberrant β-catenin accumulation in cancer cells

Date

2002

Authors

Cagatay, T.
Ozturk, M.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Oncogene

Print ISSN

0950-9232

Electronic ISSN

Publisher

Volume

21

Issue

52

Pages

7971 - 7980

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

β-catenin is involved in both cell-cell interactions and wnt pathway-dependent cell fate determination through its interactions with E-cadherin and TCF/LEF transcription factors, respectively. Cytoplasmic/nuclear levels of β-catenin are important in regulated transcriptional activation of TCF/LEF target genes. Normally, these levels are kept low by proteosomal degradation of β-catenin through Axin1- and APC-dependent phosphorylation by CKI and GSK-3β. Deregulation of β-catenin degradation results in its aberrant accumulation, often leading to cancer. Accordingly, aberrant accumulation of β-catenin is observed at high frequency in many cancers. This accumulation correlates with either mutational activation of CTNNB1 (β-catenin) or mutational inactivation of APC and Axin1 genes in some tumors. However, there are many tumors that display β-catenin accumulation in the absence of a mutation in these genes. Thus, there must be additional sources for aberrant β-catenin accumulation in cancer cells. Here, we provide experimental evidence that wild-type β-catenin accumulates in hepatocellular carcinoma (HCC) cells in association with mutational inactivation of p53 gene. We also show that worldwide p53 and β-catenin mutation rates are inversely correlated in HCC. These data suggest that inactivation of p53 is an important cause of aberrant accumulation of β-catenin in cancer cells.

Course

Other identifiers

Book Title

Citation