Browsing by Subject "Temperature-insensitive"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Digitally alloyed ZnO and TiO2 thin film thermistors by atomic layer deposition for uncooled microbolometer applications(AVS Science and Technology Society, 2017) Tilkioğlu, Bilge T.; Bolat, Sami; Tanrıkulu, Mahmud Yusuf; Okyay, Ali KemalThe authors demonstrate the digital alloying of ZnO and TiO2 via atomic layer deposition method to be utilized as the active material of uncooled microbolometers. Depositions are carried out at 200 °C. Crystallinity of the material is shown to be degraded with the increase of the Ti content in the grown film. A maximum temperature coefficient of resistance (TCR) of −5.96%/K is obtained with the films containing 12.2 at. % Ti, and the obtained TCR value is shown to be temperature insensitive in the 15-22 °C, thereby allowing a wide range of operation temperatures for the low cost microbolometers. © 2017 American Vacuum Society.Item Open Access Low-threshold optical gain and lasing of colloidal nanoplatelets(IEEE, 2014-10) Keleştemur, Yusuf; Güzeltürk, Burak; Olutaş, Murat; Delikanlı, Savaş; Demir, Hilmi VolkanSemiconductor nanocrystals, which are also known as colloidal quantum dots (CQDs), are highly attractive materials for high performance optoelectronic device applications such as lasers. With their size, shape and composition tunable electronic structure and optical properties, CQDs are highly desired for achieving full-color, temperature-insensitive, low-threshold and solution-processed lasers [1, 2]. However, due to their small size, they suffer from the nonradiative multiexciton Auger Recombination (AR), where energy of a bound electron-hole pair is transferred to a third particle of either an electron or a hole instead of radiative recombination. Therefore, CQDs having suppressed AR are strongly required for achieving high quality CQD-based lasers. To address this issue, CQDs having different size, shape and electronic structure have been synthesized and studied extensively [3-5]. Generally, suppression of AR and lower optical gain thresholds are achieved via reducing the wavefunction overlap of the electron and hole in a CQD. However, the separation of the electron and hole wavefunctions will dramatically decrease the oscillator strength and optical gain coefficient, which is highly critical for achieving high performance lasers. Therefore, colloidal materials with suppressed AR and high gain coefficients are highly welcomed. Here, we study optical gain performance of colloidal quantum wells [6] of CdSe-core and CdSe/CdS core/crown nanoplatelets (NPLs) that demonstrate remarkable optical properties with ultra-low threshold one- and two-photon optical pumping. As a result of their giant oscillator strength, superior optical gain and lasing performance are achieved from these colloidal NPLs with greatly enhanced gain coefficient [7]. © 2014 IEEE.