Browsing by Subject "Synthesis (chemical)"
Now showing 1 - 20 of 40
- Results Per Page
- Sort Options
Item Open Access 2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices(IEEE, 2014-08) El-Atab, N.; Özcan, Ayşe; Alkış, Sabri; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding Silicon Nanoparticles (Si-NPs) in ZnO based charge trapping memory devices is studied. Si-NPs are fabricated by laser ablation of a silicon wafer in deionized water followed by sonication and filtration. The active layer of the memory was deposited by Atomic Layer Deposition (ALD) and spin coating technique was used to deliver the Si-NPs across the sample. The nanoparticles provided a good retention of charges (>10 years) in the memory cells and allowed for a large threshold voltage (Vt) shift (3.4 V) at reduced programming voltages (1 V). The addition of ZnO to the charge trapping media enhanced the electric field across the tunnel oxide and allowed for larger memory window at lower operating voltages. © 2014 IEEE.Item Open Access Application of the Ugi reaction with multiple amino acid-derived components: Synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics(Royal Society of Chemistry, 2015) Stucchi, M.; Cairati, S.; Cetin-Atalay, R.; Christodoulou, M.S.; Grazioso G.; Pescitelli G.; Silvani, A.; Yildirim, D.C.; Lesma G.The concurrent employment of α-amino acid-derived chiral components such as aldehydes and α-isocyanoacetates, in a sequential Ugi reaction/cyclization two-step strategy, opens the door to the synthesis of three structurally distinct piperazine-based scaffolds, characterized by the presence of l-Ala and/or l-Phe-derived side chains and bearing appropriate functionalities to be easily applied in peptide chemistry. By means of computational studies, these scaffolds have been demonstrated to act as minimalist peptidomimetics, able to mimic a well defined range of peptide secondary structures and therefore potentially useful for the synthesis of small-molecule PPI modulators. Preliminary biological evaluation of two different resistant hepatocellular carcinoma cellular lines, for which differentiation versus resistance ability seem to be strongly correlated with well defined types of PPIs, has revealed a promising antiproliferative activity for selected compounds. © The Royal Society of Chemistry 2015.Item Open Access Catalytic self-threading: a new route for the synthesis of polyrotaxanes(American Chemical Society, 2004) Tuncel, D.; Steinke, J. H. G.Main chain and branched polyrotaxanes have been synthesized in which polymerization and rotaxane formation occur simultaneously, due to the presence of the catalytically active self-threading macrocycle cucurbit[6]uril. Using monomers that contain stopper groups to prevent the catalytic macrocycle from noncatalytic threading, it was possible to prepare polyrotaxanes in high yields with molecular weights up to 39000. These polyrotaxanes are structurally perfect in the sense that exactly two macrocyles are threaded onto each structural repeat unit. Investigations into the polymerization mechanism have demonstrated that the catalyst cucurbit[6]uril is highly sensitive toward the structure of the monomers employed and a poorly designed monomer may result in complete inactivity. Features of the mechanism are discussed in some detail.Item Open Access A conducting composite of polypyrrole II. As a gas sensor(Elsevier, 1995) Selampinar, F.; Toppare, L.; Akbulut, U.; Yalçin, T.; Süzer, Ş.Pure polypyrrole (PPy) and polypyrrole-polyamide (PPy-PA) composite films were synthesized electrochemically. The gas-sensing ability was investigated for both pure PPy and PPy-PA films. The composite films' response to several gases are better defined and reproducible compared to pristine conducting polymer. Electrochemical behaviour of PPy and PPy-PA electrodes in the presence of pyrrole and pyrrole-free medium is investigated via cyclic voltammetry. Mass spectrometry studies strictly reveal that the composite is completely different to a mechanical mixture. This phenomenon is discussed in comparison to polyaniline-polycarbonate composite. © 1995.Item Open Access Conducting polymer composites of polypyrrole and polyindene(Elsevier, 1996) Bozkurt, A.; Akbulut, U.; Toppare, L.Polypyrrole-polyindene composites were prepared via electrochemical methods. Two different approaches were utilized. In the first, the electro-initiated polymerization of indene on a platinum electrode was achieved at 2.0 V versus Ag/Ag+ in acetonitrile. Then the polyindene-coated electrode was used for the electrochemical polymerization of pyrrole at 1.0 V versus Ag/Ag+. In the second case, electrochemical coating of platinum electrode with polypyrrole at 1.0 V versus Ag/Ag+ was carried out and indene was polymerized on the conducting polymer at 2.0 V versus Ag/Ag+ in acetonitrile medium. The characterizations of these composites were done by FT-IR, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). Electrical conductivities were evaluated by two-probe and four-probe methods.Item Open Access Cytotoxicity of multifunctional surfactant containing capped mesoporous silica nanoparticles(Royal Society of Chemistry, 2016) Yildirim, A.; Turkaydin, M.; Garipcan, B.; Bayındır, MehmetThis paper reports the synthesis of silica capped surfactant (cetyltrimethylammonium bromide; CTAB) and dye (Rose Bengal; RB) containing mesoporous silica nanoparticles (MSNs). Capping the pores of the surfactant containing MSNs with a thin silica layer decreased the immediate surfactant originated cytotoxicity of these particles without affecting their long term (3 days) cytotoxicity. Also, the silica capping process almost completely prevented the hemolytic activity of the surfactant containing MSNs. In addition, improved uptake of silica capped MSNs compared to the uncapped particles by cancer cells was demonstrated. The delayed cytotoxicity, low hemolytic activity, and better cellular uptake of the silica capped MSNs make them promising for the development of safe (i.e. with fewer side effects) yet efficient theranostic agents. These nanocarriers may release the loaded cytotoxic molecules (CTAB) mostly after being accumulated in the tumor site and cause so minimal damage to the normal tissues and blood components. In addition, the nanoscale confinement of RB molecules inside the pores of MSNs makes the particles brightly fluorescent. Furthermore, it was demonstrated that due to the singlet oxygen generation capability of the RB dye the silica capped MSNs can be also used for photodynamic therapy of cancer. © 2016 The Royal Society of Chemistry.Item Open Access Effects of ions on the liquid crystalline mesophase of transition-metal salt: surfactant (CnEOm)(American Chemical Society, 2004) Dag, Ö.; Alayoǧlu, S.; Uysal, İ.The transition-metal aqua complex salts [M(H2O) x]Y2 (where M is some of the first- and second-row transitionmetal ions and Y is Cl-, NO3-, and ClO4- counteranions) form liquid crystalline (LC) mesophases with oligo(ethylene oxide) nonionic surfactants (CnH 2n+1(CH2CH2O)mOH, denoted as C nEOm). The structure of the [M(H2O) x]Y2:CnEOm mesophase is usually 2D hexagonal in nitrate systems, cubic in perchlorate systems, and absent in the chloride systems. The solubility of the metal aqua complex salt follows the Hofmeister series in a [M(H2O)x]Y2:C nEOm mesophase. However, the nitrate ion interacts with the metal center as a bidentate and/or unidentate ligand, therefore reducing the ion density (and/or ionic strength) of the LC medium and further enhancing the solubility of nitrate salt in the LC systems. The cobalt chloride salt is the only soluble chloride salt that undergoes ligand-exchange reactions in the [Co(H2O)6]Cl2:CnEOm system. In an LC mesophase, anions have a greater influence on the hydrophilicity of nonionic surfactants than do cations. The structure and stability of the LC mesophase can be controlled by controlling either the hydrophilicity of the nonionic surfactant (by choosing the right anion type) or the ion density of the medium (by either influencing the equilibrium between the free and coordinated anions or balancing between the coordinating and noncoordinating anions in the medium).Item Open Access Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions(2011) İbrahimova, V.; Ekiz, S.; Gezici, Ö.; Tuncel, D.Here, we report a novel method to synthesize multifunctional nanoparticles that can be used in biological studies, such as in cell imaging and as a carrier for biomolecules/drugs. The nanoparticles were prepared either via Cu-catalyzed or cucurbit[6]uril (CB6)-catalyzed click reactions between azide groups containing hydrophobic blue, green and yellow emitting fluorene-based conjugated polymers and a hydrophilic diaminodialkyne containing cross-linker. Through the click reaction, not only does the cross-linking confer stability, but it also introduces functional groups, such as triazoles and amines, to the nanoparticles. Moreover, CB6 not only acted as a catalyst to facilitate the copper-free click reaction, but it also allowed us to obtain nanoparticles containing rotaxanes in which the triazole units were encapsulated by CB6 units. TEM images of the nanoparticles also showed that they display very interesting morphologies. Incorporation of hydrophilic functional groups to the hydrophobic conjugated polymers resulted in a distinct phase separation, producing Janus-like or patchy particles.Item Open Access Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations(Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.Item Open Access Generalised logic program transformation schemas(Springer, 1998-07) Büyükyıldız, Halime; Flener, PierreSchema-based logic program transformation has proven to be an eective technique for the optimisation of programs. This paper results from the research that began by investigating the suggestions in [11] to construct a more general database of transformation schemas for optimising logic programs at the declarative level. The proposed transformation schemas fully automate accumulator introduction (also known as descending computational generalisation), tupling generalisation (a special case of structural generalisation), and duality laws (which are extensions to relational programming of the rst duality law of the fold operators in functional programming). The schemas are proven correct. A prototype schema-based transformation system is evaluated. © Springer-Verlag Berlin Heidelberg 1998.Item Open Access In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study(Elsevier BV, 2010) Odaci, D.; Kahveci, M.U.; Sahkulubey, E.L.; Ozdemir, C.; Uyar, Tamer; Timur, S.; Yagci Y.In situ synthesis of poly(ethylene glycol) (PEG) hydrogels containing gold nanoparticles(AuNPs) and glucose oxidase (GOx) enzyme by photo-induced electron transfer process was reported here and applied in electrochemical glucose biosensing as the model system. Newly designed bionanocomposite matrix by simple one-step fabrication offered a good contact between the active site of the enzyme and AuNPs inside the network that caused the promotion in the electron transfer properties that was evidenced by cyclic voltammetryas well as higher amperometric biosensing responses in comparing with response signals obtained from the matrix without AuNPs. As well as some parameters important in the optimization studies such as optimum pH, enzyme loading and AuNP amount, the analytical characteristics of the biosensor (AuNP/GOx) were examined by the monitoring of chronoamperometric response due to the oxygen consumption through the enzymatic reaction at − 0.7 V under optimized conditions at sodium acetate buffer (50 mM, pH 4.0) and the linear graph was obtained in the range of 0.1–1.0 mM glucose. The detection limit (LOD) of the biosensor was calculated as 0.06 mM by using the signal to noise ratio of 3. Moreover, the presence of AuNPs was visualized by TEM. Finally, the biosensor was applied for glucose analysis for some beverages and obtained data were compared with HPLC as the reference method to test the possible matrix effect due to the nature of the samples.Item Open Access Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure(Wiley-VCH Verlag, 2015) El-Atab, N.; Rizk, A.; Tekcan, B.; Alkis, S.; Okyay, Ali Kemal; Nayfeh, A.A memory structure containing ultra-small 2-nm laser-synthesized silicon nanoparticles is demonstrated. The Si-nanoparticles are embedded between an atomic layer deposited high-κ dielectric Al2O3 layer and a sputtered SiO2 layer. A memory effect due to charging of the Si nanoparticles is observed using high frequency C-V measurements. The shift of the threshold voltage obtained from the hysteresis measurements is around 3.3V at 10/-10V gate voltage sweeping. The analysis of the energy band diagram of the memory structure and the negative shift of the programmed C-V curve indicate that holes are tunneling from p-type Si via Fowler-Nordheim tunneling and are being trapped in the Si nanoparticles. In addition, the structures show good endurance characteristic (>105program/erase cycles) and long retention time (>10 years), which make them promising for applications in non-volatile memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performance(American Chemical Society, 2017-09) Pradhan, A. C.; Uyar, TamerThe one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co3O4-CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co3O4-CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co3O4-CuO NFs but also single mesoporous Co3O4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co3O4 nanofibers framework (Co3O4-CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co3O4-CuO NFs is due to the internal charge transfer between Co2+ to Co3+ and Cu2+, proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co3O4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co3O4-CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co3O4-CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co3O4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co3O4-CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.Item Open Access Multi-temperature zone droplet-based microreactor for increased temperature control in nanoparticle synthesis(Wiley-VCH Verlag, 2014) Erdem, E. Y.; Cheng, J. C.; Doyle, F. M.; Pisano, A. P.Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis.Item Open Access Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture(Elsevier, 2014) San, N. O.; Kurşungöz, C.; Tümtaş, Y.; Yaşa, Ö.; Ortac, B.; Tekinay, T.Scientific research involving nanotechnology has grown exponentially and has led to the development of engineered nanoparticles (NPs). Silica NPs have been used in numerous scientific and technological applications over the past decade, necessitating the development of efficient methods for their synthesis. Recent studies have explored the potential of laser ablation as a convenient way to prepare metal and oxide NPs. Due to its high silica content, low cost, and widespread availability, sugarbeet bagasse is highly suitable as a raw material for producing silica NPs via laser ablation. In this study, two different NP production methods were investigated: laser ablation and NaOH treatment. We developed a novel, one-step method to produce silica NPs from sugarbeet bagasse using laser ablation, and we characterized the silica NPs using environmental scanning electron microscopy (ESEM), energy dispersive spectrometry (EDS), dynamic light scattering (DLS), transmission electron microscopy (TEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. EDS analysis and XPS confirmed the presence of silica NPs. The NPs produced by laser ablation were smaller (38-190 nm) than those produced by NaOH treatment (531-825 nm). Finally, we demonstrated positive effects of silica NPs produced from laser ablation on the growth of microalgae, and thus, our novel method may be beneficial as an environmentally friendly procedure to produce NPs.Item Open Access On correct program schemas(Springer, Berlin, Heidelberg, 1998) Flener, Pierre; Lau, K. K.; Ornaghi, M.We present our work on the representation and correctness of program schemas, in the context of logic program synthesis. Whereas most researchers represent schemas purely syntactically as higher-order expressions, we shall express a schema as an open rst-order theory that axiomatises a problem domain, called a specication framework, containing an open program that represents the template of the schema. We will show that using our approach we can dene a meaningful notion of correctness for schemas, viz. that correct program schemas can be expressed as parametric specication frameworks containing templates that are steadfast, i.e. programs that are always correct provided their open relations are computed correctly. © Springer-Verlag Berlin Heidelberg 1998.Item Open Access On the possibility of grafting conducting polymers into insulating ones(Elsevier, 1996) Bahçeci, S.; Toppare, L.; Yurtsever, E.The possibility of grafting between conducting polymers, like polypyrrole (PPy) and polyaniline (PAn), and insulating polymers, such as polybisphenol A carbonate (PC) and polyamide (PA), is studied via semi-empirical methods using the AM1 parametrization. Several experimental studies on the issue have previously revealed that a chemical interaction exists between the couples (PAn-PC, PPy-PC and PPy-PA) during the electrochemical synthesis of PAn and PPy in the insulating host matrices. Here we present additional theoretical evidence indicating that such grafting is possible, at least for small oligomers.Item Open Access One-pot synthesis of CdS nanoparticles in the channels of mesosructured silica films and monoliths(American Chemical Society, 2005) Tura, C.; Coombs, N.; Dag, Ö.Cd(II)-modified mesoporous silica films and/or monoliths synthesized in one pot using a true liquid crystalline (TLC) approach have been reacted with H2S gas to produce CdS-modified mesostructured nanocomposite materials (Nano-CdS/meso-SiO2). During this process, both the TLC and the metallotropic liquid crystalline (MLC) mesophase of metal salt ([Cd(H 2O)4](NO3)2)-nonionic surfactant (CnH2n+1- (OCH2CH2)mOH, CnEOm) systems were collectively used to incorporate large quantities of metal ions into the mesoporous silica film and monoliths. The effect of the cadmium nitrate concentration on the formation and structure of the mesoporous silica has also been investigated. The results show that at low salt concentrations, the mesoporous silica is anisotropic (hexagonal); however, at high salt concentration, the structure is isotropic (cubic or disordered). The freshly prepared CdS nanoparticles are reactive toward the surface acids that form during the H2S treatment. These surface acids also promote the degradation of the CdS nanopaticles. However, the CdS particles in the mesopores can be stabilized by washing out the acid sides or aging the samples for a period of time before the H2S reaction. The optical absorption edge of the CdS nanoparticle in the pores is sensitive to the composition and structure of the host. In this context, the materials were characterized using FTIR, micro-Raman, UV-visible absorption spectroscopy, POM, TEM, and PXRD techniques.Item Open Access Organization of bridging organics in periodic mesoporous organosilicas (PMOs)-polarization micro-raman spectroscopy(Wiley, 2001) Dag, Ö.; Ozin, G. A.The organization of bridging organics in oriented periodic mesoporous organosilica film (OPMOF) was demonstrated using the polarization micro-Raman spectroscopy (PMRS) in conjunction with powder x-ray diffraction (PXRD) and polarization optical microscopy (POM). The synthesis and the structural characterization of hexagonal symmetry OPMOF containing bridge-bonded ethane, ethene inside the silica channel walls were described. The mesoscale channels were found to run parallel to the surface of the underlying glass substrates as demonstrated by the PXRD measurements. A hexagonal array of channels with glassy silica organosilica walls was the best description of the structure shown by the PMRS measurements of OPMOF.Item Open Access PH-Responsive polypseudorotaxane synthesized through cucurbit[6]uril catalyzed 1, 3-dipolar cycloaddition(2006) Tuncel, D.; Tiftik, H. B.; Salih, B.A pH-responsive polypseudorotaxane has been synthesized via cucurbit[6]uril (CB6)-catalyzed 1,3-dipolar cycloaddition using diazide and dialkyne monomers, which contain a long aliphatic-spacer. The polypseudorotaxane was characterized by spectroscopic techniques (1H, 13C NMR and FT-IR) and matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS). The experimental results reveal that this polypseudorotaxane behaves as a pH-driven polymeric switch. Thus, when amine groups are protonated at an appropriate pH, CB6s are located on the triazole rings due to ion-dipole interaction, whereas at high pH they move onto the hydrophobic aliphatic spacer rather than slipping off the polypseudorotaxane. © The Royal Society of Chemistry 2006.