BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Surface Functionalization"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Design, synthesis and characterization of bioinspired nanomaterials for engineering and biomedicine
    (2014) Ceylan, Hakan
    Nature is an inspirational school for materials scientists. Natural selection process puts a massive pressure on biological organisms giving rise to effective strategies for fabricating materials, which generally outperform their man-made counterparts. Mimicking physical and chemical features of biological materials can greatly aid in overcoming existing design constraints of engineering and medicine. In this dissertation, a reductionist, bottom-up approach is demonstrated to recapitulate biological functionalities in fully-synthetic hybrid constructs. For material design, the potential of short, rationally-designed peptides for programmed organization into nanostructured materials is explored. The resulting nano-ordered materials exhibit multifunctional and adaptive properties, which can be tailored by the information within monomeric peptide sequences as well as the emerging properties upon their self-assembly. In light of these, design, synthesis and characterization of the prototypes of nanostructured functional materials are described in the context of regenerative medicine and biomineralization.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    SILVER nano-cylinders designed by EBL used as label free LSPR nano-biosensors
    (SPIE, 2011) Cinel, Neval A.; Bütün, Serkan; Özbay, Ekmel
    Localized Surface Plasmon Resonance (LSPR) is based on the electromagnetic-field enhancement of metallic nano-particles. It is observed at the metal-dielectric interface and the resonance wavelength can be tuned by the size, shape, and periodicity of the metallic nanoparticles and the surrounding dielectric environment. This makes LSPR a powerful candidate in bio-sensing. In the present work, the size and period dependency of the LSPR wavelength was studied through simulations and fabrications. The surface functionalization, that transforms the surface into a sensing platform was done and verified. Finally, the concentration dependency of the LSPR shifts was observed. All the measurements were done by a transmission set-up. The study is at an early stage, however results are promising. The detection of specific bacteria species can be made possible with such a detection method. © 2011 SPIE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback