Design, synthesis and characterization of bioinspired nanomaterials for engineering and biomedicine
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
Nature is an inspirational school for materials scientists. Natural selection process puts a massive pressure on biological organisms giving rise to effective strategies for fabricating materials, which generally outperform their man-made counterparts. Mimicking physical and chemical features of biological materials can greatly aid in overcoming existing design constraints of engineering and medicine. In this dissertation, a reductionist, bottom-up approach is demonstrated to recapitulate biological functionalities in fully-synthetic hybrid constructs. For material design, the potential of short, rationally-designed peptides for programmed organization into nanostructured materials is explored. The resulting nano-ordered materials exhibit multifunctional and adaptive properties, which can be tailored by the information within monomeric peptide sequences as well as the emerging properties upon their self-assembly. In light of these, design, synthesis and characterization of the prototypes of nanostructured functional materials are described in the context of regenerative medicine and biomineralization.