Browsing by Subject "Stimulated emission"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access 1.06μm-1.35μm coherent pulse generation by a synchronously-pumped phosphosilicate Raman fiber laser(OSA, 2017) Elahi, Parviz; Makey, Ghaith; Turnalı, Ahmet; Tokel, Onur; İlday, Fatih ÖmerSummary form only given. Rare-earth-doped fiber lasers are attractive for microscopy and imaging applications and have developed over the past decades rapidly. They are unable to cover near-infra-red region entirely and therefore Raman and parametric process are promising for producing new wavelengths which are out of emission band of the current fiber lasers. Here, we demonstrate a synchronously-pumped Raman laser system for producing coherent signals spanning from 1.06 μm to 1.35 μm. The laser system comprises a passively-mode-locked oscillator, two stages of amplifier and a phosphosilicate Raman oscillator. The schematic of experimental setup is shown in Fig. 1(a). A mode locked oscillator operating at 37 MHz is using as a seed source. The output pulse duration and central wavelength are 6 ps and 1065 nm, respectively. 6 mW output from oscillator is launched to pre amplifier comprises 85-cm long Yb 401-PM pumped by a single mode diode through a PM wavelength division multiplexer (WDM). The power amplifier consists of a 3.5-m long Yb 1200-DC-PM with 6 μm core diameter and 125 μm cladding diameter pumped by a temperature stabilized, high power multimode diode laser via a multimode pump-signal combiner (MPC). A 30/70 coupler is employed for delivering pump signal at 1060 nm to the Raman oscillator comprises 4.2-m long ph-doped fiber. To synchronize pump and Raman and achieve coherent pulses, we adjust the length of cavity by a precise translation stage. By using proper filter inside the Raman cavity, different wavelengths are achieved.Item Open Access Enhanced spontaneous emission in semiconductor nanocrystal solids using resonant energy transfer for integrated devices(IEEE, 2008-11) Nizamoğlu, Sedat; Demir, Hilmi VolkanSize-tuneable optical properties of semiconductor nanocrystal (NC) quantum dots make them attractive for a wide range of device applications. However, in these device applications, nanocrystals typically suffer from relatively low quantum efficiency (QE) when they are cast into solid form. To reduce the effect of this problem, we propose and demonstrate the enhancement of spontaneous emission in nanocrystal solids by recycling their trapped excitons through resonant nonradiative Forster energy transfer (ET) for hybrid integrated devices. For this purpose, we designed closely packed CdSe/ZnS core/shell nanocrystal emitters with an energy gradient of approximately 160 meV integrated on LEDs.Item Open Access Femtosecond response of J aggregates adsorbed onto silver colloid surfaces(2003) Yaǧlioǧlu G.; Dorsinville, R.; Özçelik, S.The observation of stimulated emission from J aggregates adsorbed onto silver colloid surfaces using femtosecond excitation was reported. The stimulated emission was inferred from the excitation intensity and wavelength dependence of the emission band. The stimulated emission originated from the amplification of the one-exciton state emission by an induced transition from the two-exciton state to the one-exciton state.Item Open Access Green stimulated emission boosted by nonradiative resonant energy transfer from blue quantum dots(American Chemical Society, 2016) Gao, Y.; Yu, G.; Wang Y.; Dang C.; Sum, T. C.; Sun, H.; Demir, Hilmi VolkanThanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications.Item Open Access InGaN/GaN based LEDs with electroluminescence in violet, blue, and green tuned by epitaxial growth temperature(IEEE, 2007) Sarı, Emre; Nizamoğlu, Sedat; Özel, Tuncay; Demir, Hilmi Volkan; İnal, Ayşe; Ülker, Erkin; Özbay, Ekmel; Dikme, Y.; Heuken, M.In this work, we present a full set of InGaN LEDs based on a single optimal InGaN/GaN quantum design with emission wavelengths spanning from green to blue to violet by tuning the active layer growth temperature to precisely control InN incorporation into the quantum structures.Item Open Access Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets(American Chemical Society, 2015) Olutaş, M.; Güzeltürk, B.; Keleştemur, Y.; Yeltik A.; Delikanlı, S.; Demir, Hilmi VolkanHere, we systematically investigated the spontaneous and stimulated emission performances of solution-processed atomically flat quasi-2D nanoplatelets (NPLs) as a function of their lateral size using colloidal CdSe core NPLs. We found that the photoluminescence quantum efficiency of these NPLs decreases with increasing lateral size while their photoluminescence decay rate accelerates. This strongly suggests that nonradiative channels prevail in the NPL ensembles having extended lateral size, which is well-explained by the increasing number of the defected NPL subpopulation. In the case of stimulated emission the role of lateral size in NPLs influentially emerges both in the single- and two-photon absorption (1PA and 2PA) pumping. In the amplified spontaneous emission measurements, we uncovered that the stimulated emission thresholds of 1PA and 2PA exhibit completely opposite behavior with increasing lateral size. The NPLs with larger lateral sizes exhibited higher stimulated emission thresholds under 1PA pumping due to the dominating defected subpopulation in larger NPLs. On the other hand, surprisingly, larger NPLs remarkably revealed lower 2PA-pumped amplified spontaneous emission thresholds. This is attributed to the observation of a "giant" 2PA cross-section overwhelmingly growing with increasing lateral size and reaching record levels higher than 10(6) GM, at least an order of magnitude stronger than colloidal quantum dots and rods. These findings suggest that the lateral size control in the NPLs, which is commonly neglected, is essential to high-performance colloidal NPL optoelectronic devices in addition to the vertical monolayer control.Item Open Access Multi-layered CdSe/ZnS/CdSe heteronanocrystals to generate and tune white light(2008-11) Nizamoğlu, Sedat; Mutlugün, Evren; Özel, Tuncay; Demir, Hilmi Volkan; Sapra, S.; Gaponik, N.; Eychmüller, A.In this study, tuneable white light generation by controlling CdSe/ZnS/CdSe core/shell/shell heteronanocrystals integrated on InGaN/GaN light emitting diodes was presented. These multilayered quantum dots, also known as onion-like heterostructures, were designed and synthesized to emit in red (around 600 nm) from the CdSe core and in green (around 550 nm) from the CdSe shell. By designing and hybridizing these red-green emitting heterostructures on blue emitting LEDs, an integrated WLEDs on a single chip was demonstrated. By controlling the number of integrated heteronanocrystals, their (x,y) tristimulus coordinates were tuned from (0.26,0.23) to (0.37,0.36), along with their corresponding correlated color temperature tuned from 27413 K to 4192 K and the luminous efficacy of their optical radiation (the ratio of the emitted luminous flux to the radiant flux) tuned from 258 lm/W to 375 lm/W. Further investigation on the change of in-film optical properties of these heteronanocrystals with respect to their in-solution emission was performed.Item Open Access Optical transitions of Tm3 + ions for amplifiers: how the local structure works in (1-x) TeO2 + (x) M (where M = LiCl, CdCl2, WO3) glass(OSA, 2002) Aydınlı, Atilla; Ay, Feridun; Sennaroǧlu, A.; Cenk, S.; Özen, G.Optical transitions of Tm3+ ions for amplifiers was presented. Stimulated emission cross-section at the peak wavelength of the emission bands was determined. It was concluded that Tm3+ doped binary tellurite glasses are promising materials for the infrared amplifiers.Item Open Access Surface-state emission enhancement in white-luminophor CdS nanocrystals using localized plasmon coupling(IEEE, 2008-11) Özel, Tuncay; Soğancı, İbrahim Murat; Nizamoğlu, Sedat; Huyal, İlkem Özge; Mutlugün, Evren; Sapra, S.; Gaponik, N.; Eychmüller, A.; Demir, Hilmi VolkanTo make surface-state emission stronger than band-edge emission for the first time, we proposed and demonstrated plasmon coupling of the surface-state emission from the traps in these CdS nano-luminophors using localized plasmons.Item Open Access Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high ‐ Q microlasers(Wiley-VCH Verlag, 2015) Wang Y.; Fong, K. E.; Yang, S.; Ta, V.; Gao, Y.; Wang, Z.; Nalla, V.; Demir, Hilmi Volkan; Sun, H.The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady-state and time-resolved spectroscopy studies on a series of CdZnS-based CQDs, we unambiguously clarify that CdZnS-based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity-free high-Q quasitoroid microlasers were produced from self-assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution-processed gain materials, which could trigger broad research interests. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA.Item Open Access Warm white light generating nanocrystal hybridized LEDs with high color rendering index(IEEE, 2008-11) Demir, Hilmi Volkan; Nizamoğlu, Sedat; Zengin, GülişBy hybridizing custom-design CdSe/ZnS core-shell NC emitters on InGaN/GaN based blue LEDs, we demonstrated three warm-white light sources with desirably low CCT ranging from 3227 K to 1982 K as is required for SSL indoor applications. In these proof-of-concept demonstrations, high color rendering indices (82.4) and high luminous efficacies of emitted spectra (327 lm/W) were achieved, while the color temperature was simultaneously kept low as desired. Our proof-of-concept demonstrations indicated that such nanocrystal luminophor based warm-white LEDs with high-quality photometric properties hold great promise especially for future indoor lighting applications.