Browsing by Subject "Spectroscopy, Fourier Transform Infrared"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers(Elsevier, 2014) Canbolat, M. F.; Celebioglu A.; Uyar, TamerIn this study, we select naproxen (NAP) as a reference drug and electrospun poly (e-caprolactone) (PCL) nanofibers as a fibrous matrix for our drug-delivery system. NAP was complexed with beta-cyclodextrin (βCD) to form inclusion complex (NAP-βCD-IC) and then NAP-βCD-IC was incorporated into PCL nanofibers via electrospinning. The incorporation of NAP without CD-IC into electrospun PCL was also carried out for a comparative study. Our aim is to analyze the release profiles of NAP from PCL/NAP and PCL/NAP-βCD-IC nanofibers and we investigate the effect of CD-IC on the release behavior of NAP from the nanofibrous PCL matrix. The characterization of NAP-βCD-IC and the presence of CD-IC in PCL/NAP-βCD-IC nanofibers were studied by FTIR, XRD, TGA, NMR and SEM. The SEM imaging of the electrospun PCL/NAP and PCL/NAP-βCD-IC nanofibers reveal that the average fiber diameter of these nanofibers is around 300. nm, in addition, the aggregates of CD-IC in PCL/NAP-βCD-IC nanofibers is observed. The release study of NAP in buffer solution elucidate that the PCL/NAP-βCD-IC nanofibers have higher release amount of NAP than the PCL/NAP nanofibers due to the solubility enhancement of NAP by CD-IC.Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes(Elsevier, 2014) Çakmak, Z. E.; Ölmez, T. T.; Çakmak, T.; Menemen, Y.; Tekinay, T.In this study, impacts of different element absence (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) on element uptake and triacylglycerol production was followed in wild type Chlamydomonas reinhardtii CC-124 strain. Macro- and microelement composition of C. reinhardtii greatly differed under element regimes studied. In particular, heavy metal quotas of the microalgae increased strikingly under zinc supplementation. Growth was suppressed, cell biovolume, carbohydrate, total neutral lipid and triacylglycerol levels increased when microalgae were incubated under these element regimes. Most of the intracellular space was occupied by lipid bodies under all nutrient starvations, as observed by confocal microscopy and transmission electron micrographs. Results suggest that sulfur, magnesium and phosphorus deprivations are superior to nitrogen deprivation for the induction triacylglycerol production in C. reinhardtii. On the other hand, FAME profiles of the nitrogen, sulfur and phosphorus deprived cells were found to meet the requirements of international standards for biodiesel.Item Open Access Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures(2011) Acar H.; Garifullin, R.; Güler, Mustafa O.Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials. © 2011 American Chemical Society.Item Open Access Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2(Springer Verlag, 2016-02) Senthamizhan A.; Balusamy, B.; Aytac Z.; Uyar, TamerWe report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.