Browsing by Subject "Sonar sensing"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Comparative analysis of different approaches to target differentiation and localization with sonar(Elsevier, 2003) Barshan, B.; Ayrulu, B.This study compares the performances of different methods for the differentiation and localization of commonly encountered features in indoor environments. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target tracking. Different representations of amplitude and time-of-2ight measurement patterns experimentally acquired from a real sonar system are processed. The approaches compared in this study include the target differentiation algorithm, Dempster-Shafer evidential reasoning, different kinds of voting schemes, statistical pattern recognition techniques (k-nearest neighbor classifier, kernel estimator, parameterized density estimator, linear discriminant analysis, and fuzzy c-means clustering algorithm), and artificial neural networks. The neural networks are trained with different input signal representations obtained usingpre-processing techniques such as discrete ordinary and fractional Fourier, Hartley and wavelet transforms, and Kohonen's self-organizing feature map. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.Item Open Access A comparison of different approaches to target differentiation with sonar(2001) Ayrulu (Erdem), BirselThis study compares the performances of di erent classication schemes and fusion techniques for target di erentiation and localization of commonly encountered features in indoor robot environments using sonar sensing Di erentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identication map building navigation obstacle avoidance and target tracking The classication schemes employed include the target di erentiation algorithm developed by Ayrulu and Barshan statistical pattern recognition techniques fuzzy c means clustering algorithm and articial neural networks The fusion techniques used are Dempster Shafer evidential reasoning and di erent voting schemes To solve the consistency problem arising in simple ma jority voting di erent voting schemes including preference ordering and reliability measures are proposed and veried experimentally To improve the performance of neural network classiers di erent input signal representations two di erent training algorithms and both modular and non modular network structures are considered The best classication and localization scheme is found to be the neural network classier trained with the wavelet transform of the sonar signals This method is applied to map building in mobile robot environments Physically di erent sensors such as infrared sensors and structured light systems besides sonar sensors are also considered to improve the performance in target classication and localization.Item Open Access Fuzzy clustering and enumeration of target type based on sonar returns(Elsevier, 2004) Barshan, B.; Ayrulu, B.The fuzzy c-means (FCM) clustering algorithm is used in conjunction with a cluster validity criterion, to determine the number of different types of targets in a given environment, based on their sonar signatures. The class of each target and its location are also determined. The method is experimentally verified using real sonar returns from targets in indoor environments. A correct differentiation rate of 98% is achieved with average absolute valued localization errors of 0.5 cm and 0.8° in range and azimuth, respectively.Item Open Access Neural network-based target differentiation using sonar for robotics applications(IEEE, 2000-08) Barshan, B.; Ayrulu, B.; Utete, S. W.This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. The neural network can differentiate more targets with higher accuracy, improving on previously reported methods. It achieves this by exploiting the identifying features in the differential amplitude and time-of-flight (TOF) characteristics of these targets. Robustness tests indicate that the amplitude information is more crucial than TOF for reliable operation. The study suggests wider use of neural networks and amplitude information in sonar-based mobile robotics.Item Open Access Neural networks for improved target differentiation and localization with sonar(Pergamon Press, 2001) Ayrulu, B.; Barshan, B.This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. Differentiation of such features is of interest for intelligent systems in a variety of applications. Different representations of amplitude and time-of-flight measurement patterns acquired from a real sonar system are processed. In most cases, best results are obtained with the low-frequency component of the discrete wavelet transform of these patterns. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. Neural networks can differentiate more targets employing only a single sensor node, with a higher correct differentiation percentage (99%) than achieved with previously reported methods (61-90%) employing multiple sensor nodes. A sensor node is a pair of transducers with fixed separation, that can rotate and scan the target to collect data. Had the number of sensing nodes been reduced in the other methods, their performance would have been even worse. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate all target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems. Copyright © 2001 Elsevier Science Ltd.Item Open Access Reliability measure assignment to sonar for robust target differentiation(Elsevier, 2002) Ayrulu, B.; Barshan, B.This article addresses the use of evidential reasoning and majority voting in multi-sensor decision making for target differentiation using sonar sensors. Classification of target primitives which constitute the basic building blocks of typical surfaces in uncluttered robot environments has been considered. Multiple sonar sensors placed at geographically different sensing sites make decisions about the target type based on their measurement patterns. Their decisions are combined to reach a group decision through Dempster-Shafer evidential reasoning and majority voting. The sensing nodes view the targets at different ranges and angles so that they have different degrees of reliability. Proper accounting for these different reliabilities has the potential to improve decision making compared to simple uniform treatment of the sensors. Consistency problems arising in majority voting are addressed with a view to achieving high classification performance. This is done by introducing preference ordering among the possible target types and assigning reliability measures (which essentially serve as weights) to each decision-making node based on the target range and azimuth estimates it makes and the belief values it assigns to possible target types. The results bring substantial improvement over evidential reasoning and simple majority voting by reducing the target misclassification rate. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.Item Open Access A simulation model of indoor environments for ultrasonic sensors(2003) Bilgin, AliThis thesis addresses the problem of extracting the map of an unknown environment from echo signals received by ultrasonic transducers. A new map-building method is developed and demonstrated through simulations for ultrasonic sensors. Ultrasonic transducer arrays are used for scanning the environment. The method uses ultrasonic range and amplitude data to build a two-dimensional map of an unknown environment. All of the amplitude information is taken into account in the simulation studies. The received echo amplitude where it exceeds a predefined threshold is used for drawing the map. The method can extract the surface profiles from the received echoes with knowledge of transducers’ position. With this method, sonar signal returns from arbitrary indoor environments can be represented realistically and with relatively low computation time. Different types of environments composed of planar surfaces, corners, edges, cylinders, and arbitrarily curved surfaces have been considered. An error criterion is developed to assess the accuracy of the extracted maps. Randomly located and randomly oriented configuration of transducers gives the best estimate of the surface pro- files. Most of the closed room models is a continuous combination of basic shapes. The wall-following algorithm is employed to extract the profiles of indoor environments. The results indicate that many of the indoor environment profiles can be accurately extracted by this method. The method is fast and suitable for real-time map building applications.Item Open Access Surface profile determination from multiple sonar data using morphological processing(Sage Publications Ltd., 1999-08) Başkent, D.; Barshan, B.This paper presents a novel method for surface profile determination using multiple sensors. Our approach is based on morphological processing techniques to fuse the range data from multiple sensor returns in a manner that directly reveals the target surface profile. The method has the intrinsic ability of suppressing spurious readings due to noise, crosstalk, and higher-order reflections, as well as processing multiple reflections informatively. The approach taken is extremely flexible and robust, in addition to being simple and straightforward. It can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays. The algorithm is verified both by simulating and experiments in the laboratory by processing real sonar data obtained from a mobile robot. The results are compared to those obtained from a more accurate structured-light system, which is, however, more complex and expensive.Item Open Access Transform pre-processing for neural networks for object recognition and localization with sonar(SPIE, 2003) Barshan, Billur; Ayrulu, BirselWe investigate the pre-processing of sonar signals prior to using neural networks for robust differentiation of commonly encountered features in indoor environments. Amplitude and time-of-flight measurement patterns acquired from a real sonar system are pre-processed using various techniques including wavelet transforms, Fourier and fractional Fourier transforms, and Kohonen's self-organizing feature map. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. Neural networks can differentiate more targets, employing only a single sensor node, with a higher correct differentiation percentage than achieved with previously reported methods employing multiple sensor nodes. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate a considerable number of target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.