Transform pre-processing for neural networks for object recognition and localization with sonar

Date
2003
Advisor
Instructor
Source Title
Proceedings of SPIE Vol. 5102, lndependent Component Analyses, Wavelets, and Neural Networks
Print ISSN
0277-786X
Electronic ISSN
Publisher
SPIE
Volume
5102
Issue
Pages
114 - 128
Language
English
Type
Conference Paper
Journal Title
Journal ISSN
Volume Title
Abstract

We investigate the pre-processing of sonar signals prior to using neural networks for robust differentiation of commonly encountered features in indoor environments. Amplitude and time-of-flight measurement patterns acquired from a real sonar system are pre-processed using various techniques including wavelet transforms, Fourier and fractional Fourier transforms, and Kohonen's self-organizing feature map. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. Neural networks can differentiate more targets, employing only a single sensor node, with a higher correct differentiation percentage than achieved with previously reported methods employing multiple sensor nodes. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate a considerable number of target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.

Course
Other identifiers
Book Title
Keywords
Acoustic signal processing, Artificial neural networks, Discrete wavelet transform, Feature extraction, Fractional Fourier transform, Input pre-processing, Learning, Object recognition, Position estimation, Sonar sensing, Target differentiation, Target localization
Citation
Published Version (Please cite this version)