Reliability measure assignment to sonar for robust target differentiation

Date

2002

Authors

Ayrulu, B.
Barshan, B.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
18
downloads

Citation Stats

Series

Abstract

This article addresses the use of evidential reasoning and majority voting in multi-sensor decision making for target differentiation using sonar sensors. Classification of target primitives which constitute the basic building blocks of typical surfaces in uncluttered robot environments has been considered. Multiple sonar sensors placed at geographically different sensing sites make decisions about the target type based on their measurement patterns. Their decisions are combined to reach a group decision through Dempster-Shafer evidential reasoning and majority voting. The sensing nodes view the targets at different ranges and angles so that they have different degrees of reliability. Proper accounting for these different reliabilities has the potential to improve decision making compared to simple uniform treatment of the sensors. Consistency problems arising in majority voting are addressed with a view to achieving high classification performance. This is done by introducing preference ordering among the possible target types and assigning reliability measures (which essentially serve as weights) to each decision-making node based on the target range and azimuth estimates it makes and the belief values it assigns to possible target types. The results bring substantial improvement over evidential reasoning and simple majority voting by reducing the target misclassification rate. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Source Title

Pattern Recognition

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English