Browsing by Subject "Single nucleotide polymorphism"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access The BioPAX community standard for pathway data sharing(Nature Publishing Group, 2010-09) Demir, Emek; Cary, M. P.; Paley, S.; Fukuda, K.; Lemer, C.; Vastrik, I.; Wu, G.; D'Eustachio, P.; Schaefer, C.; Luciano, J.; Schacherer, F.; Martinez-Flores, I.; Hu, Z.; Jimenez-Jacinto, V.; Joshi-Tope, G.; Kandasamy, K.; Lopez-Fuentes, A. C.; Mi, H.; Pichler, E.; Rodchenkov, I.; Splendiani, A.; Tkachev, S.; Zucker, J.; Gopinath, G.; Rajasimha, H.; Ramakrishnan, R.; Shah, I.; Syed, M.; Anwar, N.; Babur, Özgün; Blinov, M.; Brauner, E.; Corwin, D.; Donaldson, S.; Gibbons, F.; Goldberg, R.; Hornbeck, P.; Luna, A.; Murray-Rust, P.; Neumann, E.; Reubenacker, O.; Samwald, M.; Iersel, Martijn van; Wimalaratne, S.; Allen, K.; Braun, B.; Whirl-Carrillo, M.; Cheung, Kei-Hoi; Dahlquist, K.; Finney, A.; Gillespie, M.; Glass, E.; Gong, L.; Haw, R.; Honig, M.; Hubaut, O.; Kane, D.; Krupa, S.; Kutmon, M.; Leonard, J.; Marks, D.; Merberg, D.; Petri, V.; Pico, A.; Ravenscroft, D.; Ren, L.; Shah, N.; Sunshine, M.; Tang R.; Whaley, R.; Letovksy, S.; Buetow, K. H.; Rzhetsky, A.; Schachter, V.; Sobral, B. S.; Doğrusöz, Uğur; McWeeney, S.; Aladjem, M.; Birney, E.; Collado-Vides, J.; Goto, S.; Hucka, M.; Novère, Nicolas Le; Maltsev, N.; Pandey, A.; Thomas, P.; Wingender, E.; Karp, P. D.; Sander, C.; Bader, G. D.Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery. © 2010 Nature America, Inc. All rights reserved.Item Open Access Demographically-based evaluation of genomic regions under selection in domestic dogs(Public Library of Science, 2016) Freedman, A. H.; Schweizer, R. M.; Vecchyo, D. Ortega-Del; Han, E.; Davis, B. W.; Gronau, I.; Silva, P. M.; Galaverni, M.; Fan, Z.; Marx, P.; Lorente-Galdos, B.; Ramirez, O.; Hormozdiari, F.; Alkan C.; Vilà, C.; Squire K.; Geffen, E.; Kusak, J.; Boyko, A. R.; Parker, H. G.; Lee C.; Tadigotla, V.; Siepel, A.; Bustamante, C. D.; Harkins, T. T.; Nelson, S. F.; Marques Bonet, T.; Ostrander, E. A.; Wayne, R. K.; Novembre, J.Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rdtop hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers. © 2016, Public Library of Science. All Rights Reserved.Item Open Access Early postzygotic mutations contribute to de novo variation in a healthy monozygotic twin pair(B M J Group, 2014) Dal, G. M.; Ergüner, B.; Saǧıroǧlu, M. S.; Yüksel, B.; Onat, O. E.; Alkan C.; Özçelik, T.Background: Human de novo single-nucleotide variation (SNV) rate is estimated to range between 0.82-1.70×10-8 mutations per base per generation. However, contribution of early postzygotic mutations to the overall human de novo SNV rate is unknown. Methods: We performed deep whole-genome sequencing (more than 30-fold coverage per individual) of the whole-blood-derived DNA samples of a healthy monozygotic twin pair and their parents. We examined the genotypes of each individual simultaneously for each of the SNVs and discovered de novo SNVs regarding the timing of mutagenesis. Putative de novo SNVs were validated using Sanger-based capillary sequencing. Results: We conservatively characterised 23 de novo SNVs shared by the twin pair, 8 de novo SNVs specific to twin I and 1 de novo SNV specific to twin II. Based on the number of de novo SNVs validated by Sanger sequencing and the number of callable bases of each twin, we calculated the overall de novo SNV rate of 1.31×10-8 and 1.01×10-8 for twin I and twin II, respectively. Of these, rates of the early postzygotic de novo SNVs were estimated to be 0.34×10-8 for twin I and 0.04×10-8 for twin II. Conclusions: Early postzygotic mutations constitute a substantial proportion of de novo mutations in humans. Therefore, genome mosaicism resulting from early mitotic events during embryogenesis is common and could substantially contribute to the development of diseases.Item Open Access A global reference for human genetic variation(Nature Publishing Group, 2015) Auton, A.; Abecasis, G. R.; Altshuler, D. M.; Durbin, R. M.; Bentley, D. R.; Chakravarti, A.; Clark, A. G.; Donnelly, P.; Eichler, E. E.; Flicek, P.; Gabriel, S. B.; Gibbs, R. A.; Green, E. D.; Hurles, M. E.; Knoppers, B. M.; Korbel, J. O.; Lander, E. S.; Lee, C.; Lehrach, H.; Mardis, E. R.; Marth, G. T.; McVean, G. A.; Nickerson, D. A.; Schmidt, J. P.; Sherry, S. T.; Wang, J.; Wilson, R. K.; Boerwinkle, E.; Doddapaneni, H.; Han, Y.; Korchina, V.; Kovar, C.; Lee, S.; Muzny, D.; Reid, J. G.; Zhu, Y.; Chang, Y.; Feng, Q.; Fang, X.; Guo, X.; Jian, M.; Jiang, H.; Jin, X.; Lan, T.; Li, G.; Li, J.; Li, Y.; Liu, S.; Liu, X.; Lu, Y.; Ma, X.; Tang, M.; Wang, B.; Wang, G.; Wu, H.; Wu, R.; Xu, X.; Yin, Y.; Zhang, D.; Zhang, W.; Zhao, J.; Zhao, M.; Zheng, X.; Gupta, N.; Gharani, N.; Toji, L. H.; Gerry, N. P.; Resch, A. M.; Barker, J.; Clarke, L.; Gil, L.; Hunt, S. E.; Kelman, G.; Kulesha, E.; Leinonen, R.; McLaren, W. M.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Smith, R. E.; Streeter, I.; Thormann, A.; Toneva, I.; Vaughan, B.; Zheng-Bradley, X.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Sudbrak, R.; Albrecht, M. W.; Amstislavskiy, V. S.; Borodina, T. A.; Lienhard, M.; Mertes, F.; Sultan, M.; Timmermann, B.; Yaspo, Marie-Laure; Fulton, L.; Ananiev, V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Church, D.; Cohen, R.; Cook, C.; Garner, J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez, J.; Meric, P.; O'Sullivan, C.; Ostapchuk, Y.; Phan, L.; Ponomarov, S.; Schneider, V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang, H.; Balasubramaniam, S.; Burton, J.; Danecek, P.; Keane, T. M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker, J.; Quail, M.; Davies, C. J.; Gollub, J.; Webster, T.; Wong, B.; Zhan, Y.; Campbell, C. L.; Kong, Y.; Marcketta, A.; Yu, F.; Antunes, L.; Bainbridge, M.; Sabo, A.; Huang, Z.; Coin, L. J. M.; Fang, L.; Li, Q.; Li, Z.; Lin, H.; Liu, B.; Luo, R.; Shao, H.; Xie, Y.; Ye, C.; Yu, C.; Zhang, F.; Zheng, H.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Garrison, E. P.; Kural, D.; Lee, W. P.; Leong, W. F.; Stromberg, M.; Ward, A. N.; Wu, J.; Zhang, M.; Daly, M. J.; DePristo, M. A.; Handsaker, R. E.; Banks, E.; Bhatia, G.; Del Angel, G.; Genovese, G.; Li, H.; Kashin, S.; McCarroll, S. A.; Nemesh, J. C.; Poplin, R. E.; Yoon, S. C.; Lihm, J.; Makarov, V.; Gottipati, S.; Keinan, A.; Rodriguez-Flores, J. L.; Rausch, T.; Fritz, M. H.; Stütz, A. M.; Beal, K.; Datta, A.; Herrero, J.; Ritchie, G. R. S.; Zerbino, D.; Sabeti, P. C.; Shlyakhter, I.; Schaffner, S. F.; Vitti, J.; Cooper, D. N.; Ball, E. V.; Stenson, P. D.; Barnes, B.; Bauer, M.; Cheetham, R. K.; Cox, A.; Eberle, M.; Kahn, S.; Murray, L.; Peden, J.; Shaw, R.; Kenny, E. E.; Batzer, M. A.; Konkel, M. K.; Walker, J. A.; MacArthur, D. G.; Lek, M.; Herwig, R.; Ding, L.; Koboldt, D. C.; Larson, D.; Ye, K.; Gravel, S.; Swaroop, A.; Chew, E.; Lappalainen, T.; Erlich, Y.; Gymrek, M.; Willems, T. F.; Simpson, J. T.; Shriver, M. D.; Rosenfeld, J. A.; Bustamante, C. D.; Montgomery, S. B.; De La Vega, F. M.; Byrnes, J. K.; Carroll, A. W.; DeGorter, M. K.; Lacroute, P.; Maples, B. K.; Martin, A. R.; Moreno-Estrada, A.; Shringarpure, S. S.; Zakharia, F.; Halperin, E.; Baran, Y.; Cerveira, E.; Hwang, J.; Malhotra, A.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Hyland, F. C. L.; Craig, D. W.; Christoforides, A.; Homer, N.; Izatt, T.; Kurdoglu, A. A.; Sinari, S. A.; Squire, K.; Xiao, C.; Sebat, J.; Antaki, D.; Gujral, M.; Noor, A.; Ye, K.; Burchard, E. G.; Hernandez, R. D.; Gignoux, C. R.; Haussler, D.; Katzman, S. J.; Kent, W. J.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E. T.; Devine, S. E.; Kang, H. M.; Kidd, J. M.; Blackwell, T.; Caron, S.; Chen, W.; Emery, S.; Fritsche, L.; Fuchsberger, C.; Jun, G.; Li, B.; Lyons, R.; Scheller, C.; Sidore, C.; Song, S.; Sliwerska, E.; Taliun, D.; Tan, A.; Welch, R.; Wing, M. K.; Zhan, X.; Awadalla, P.; Hodgkinson, A.; Li, Y.; Shi, X.; Quitadamo, A.; Lunter, G.; Marchini, J. L.; Myers, S.; Churchhouse, C.; Delaneau, O.; Gupta-Hinch, A.; Kretzschmar, W.; Iqbal, Z.; Mathieson, I.; Menelaou, A.; Rimmer, A.; Xifara, D. K.; Oleksyk, T. K.; Fu, Y.; Liu, X.; Xiong, M.; Jorde, L.; Witherspoon, D.; Xing, J.; Browning, B. L.; Browning, S. R.; Hormozdiari, F.; Sudmant, P. H.; Khurana, E.; Tyler-Smith, C.; Albers, C. A.; Ayub, Q.; Chen, Y.; Colonna, V.; Jostins, L.; Walter, K.; Xue, Y.; Gerstein, M. B.; Abyzov, A.; Balasubramanian, S.; Chen, J.; Clarke, D.; Fu, Y.; Harmanci, A. O.; Jin, M.; Lee, D.; Liu, J.; Mu, X. J.; Zhang, J.; Zhang, Y.; Hartl, C.; Shakir, K.; Degenhardt, J.; Meiers, S.; Raeder, B.; Casale, F. P.; Stegle, O.; Lameijer, E. W.; Hall, I.; Bafna, V.; Michaelson, J.; Gardner, E. J.; Mills, R. E.; Dayama, G.; Chen, K.; Fan, X.; Chong, Z.; Chen, T.; Chaisson, M. J.; Huddleston, J.; Malig, M.; Nelson, B. J.; Parrish, N. F.; Blackburne, B.; Lindsay, S. J.; Ning, Z.; Zhang, Y.; Lam, H.; Sisu, C.; Challis, D.; Evani, U. S.; Lu, J.; Nagaswamy, U.; Yu, J.; Li, W.; Habegger, L.; Yu, H.; Cunningham, F.; Dunham, I.; Lage, K.; Jespersen, J. B.; Horn, H.; Kim, D.; Desalle, R.; Narechania, A.; Sayres, M. A. W.; Mendez, F. L.; Poznik, G. D.; Underhill, P. A.; Mittelman, D.; Banerjee, R.; Cerezo, M.; Fitzgerald, T. W.; Louzada, S.; Massaia, A.; Yang, F.; Kalra, D.; Hale, W.; Dan, X.; Barnes, K. C.; Beiswanger, C.; Cai, H.; Cao, H.; Henn, B.; Jones, D.; Kaye, J. S.; Kent, A.; Kerasidou, A.; Mathias, R.; Ossorio, P. N.; Parker, M.; Rotimi, C. N.; Royal, C. D.; Sandoval, K.; Su, Y.; Tian, Z.; Tishkoff, S.; Via, M.; Wang, Y.; Yang, H.; Yang, L.; Zhu, J.; Bodmer, W.; Bedoya, G.; Cai, Z.; Gao, Y.; Chu, J.; Peltonen, L.; Garcia-Montero, A.; Orfao, A.; Dutil, J.; Martinez-Cruzado, J. C.; Mathias, R. A.; Hennis, A.; Watson, H.; McKenzie, C.; Qadri, F.; LaRocque, R.; Deng, X.; Asogun, D.; Folarin, O.; Happi, C.; Omoniwa, O.; Stremlau, M.; Tariyal, R.; Jallow, M.; Joof, F. S.; Corrah, T.; Rockett, K.; Kwiatkowski, D.; Kooner, J.; Hien, T. T.; Dunstan, S. J.; ThuyHang, N.; Fonnie, R.; Garry, R.; Kanneh, L.; Moses, L.; Schieffelin, J.; Grant, D. S.; Gallo, C.; Poletti, G.; Saleheen, D.; Rasheed, A.; Brooks, L. D.; Felsenfeld, A. L.; McEwen, J. E.; Vaydylevich, Y.; Duncanson, A.; Dunn, M.; Schloss, J. A.The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. © 2015 Macmillan Publishers Limited. All rights reserved.Item Open Access Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci(Cell Press, 2015) Sanders, S. J.; He, X.; Willsey, A. J.; Ercan-Sencicek, A. G.; Samocha, K. E.; Cicek, A. E.; Murtha, M. T.; Bal, V. H.; Bishop, S. L.; Dong, S.; Goldberg, A. P.; Jinlu, C.; Keaney, J. F.; Keaney III, J. F.; Mandell, J. D.; Moreno-De-Luca, D.; Poultney, C. S.; Robinson, E. B.; Smith L.; Solli-Nowlan, T.; Su, M. Y.; Teran, N. A.; Walker, M. F.; Werling, D. M.; Beaudet, A. L.; Cantor, R. M.; Fombonne, E.; Geschwind, D. H.; Grice, D. E.; Lord, C.; Lowe, J. K.; Mane, S. M.; Martin, D.M.; Morrow, E. M.; Talkowski, M. E.; Sutcliffe, J. S.; Walsh, C. A.; Yu, T. W.; Ledbetter, D. H.; Martin, C. L.; Cook, E. H.; Buxbaum, J. D.; Daly, M. J.; Devlin, B.; Roeder, K.; State, M. W.Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1). Through analysis of de novo mutations in autism spectrum disorder (ASD), Sanders et al. find that small deletions, but not large deletions/duplications, contain one critical gene. Combining CNV and sequencing data, they identify 6 loci and 65 genes associated with ASD.Item Open Access An integrated map of structural variation in 2,504 human genomes(Nature Publishing Group, 2015) Sudmant, P. H.; Rausch, T.; Gardner, E. J.; Handsaker, R. E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M. Hsi-Yang; Konkel, M. K.; Malhotra, A.; Stütz, A. M.; Shi, X.; Casale, F. P.; Chen, J.; Hormozdiari, F.; Dayama, G.; Chen, K.; Malig, M.; Chaisson, M. J. P.; Walter, K.; Meiers, S.; Kashin, S.; Garrison, E.; Auton, A.; Lam, H. Y. K.; Mu, X. J.; Alkan, C.; Antaki, D.; Bae, T.; Cerveira, E.; Chines, P.; Chong, Z.; Clarke, L.; Dal, E.; Ding, L.; Emery, S.; Fan, X.; Gujral, M.; Kahveci, F.; Kidd, J. M.; Kong, Y.; Lameijer, Eric-Wubbo; McCarthy, S.; Flicek, P.; Gibbs, R. A.; Marth, G.; Mason, C. E.; Menelaou, A.; Muzny, D. M.; Nelson, B. J.; Noor, A.; Parrish, N. F.; Pendleton, M.; Quitadamo, A.; Raeder, B.; Schadt, E. E.; Romanovitch, M.; Schlattl, A.; Sebra, R.; Shabalin, A. A.; Untergasser, A.; Walker J. A.; Wang, M.; Yu, F.; Zhang, C.; Zhang, J.; Zheng-Bradley, X.; Zhou, W.; Zichner, T.; Sebat, J.; Batzer, M. A.; McCarroll, S. A.; Mills, R. E.; Gerstein, M. B.; Bashir, A.; Stegle, O.; Devine, S. E.; Lee, C.; Eichler, E. E.; Korbel, J. O.Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.Item Open Access Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes(Lippincott Williams & Wilkins, 2015) Yao, C.; Chen, B. H.; Joehanes, R.; Otlu, B.; Zhang X.; Liu, C.; Huan, T.; Tastan, O.; Cupples, L. A.; Meigs, J. B.; Fox, C. S.; Freedman, J. E.; Courchesne, P.; O'Donnell, C. J.; Munson, P. J.; Keles, S.; Levy, D.BACKGROUND - : Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. METHODS AND RESULTS - : We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. CONCLUSIONS - : Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD.Item Open Access Inter-varietal structural variation in grapevine genomes(Wiley-Blackwell Publishing Ltd., 2016) Cardone, M. F.; D'Addabbo, P.; Alkan C.; Bergamini, C.; Catacchio, C. R.; Anaclerio, F.; Chiatante, G.; Marra, A.; Giannuzzi, G.; Perniola, R.; Ventura M.; Antonacci, D.Grapevine (Vitis vinifera L.) is one of the world's most important crop plants, which is of large economic value for fruit and wine production. There is much interest in identifying genomic variations and their functional effects on inter-varietal, phenotypic differences. Using an approach developed for the analysis of human and mammalian genomes, which combines high-throughput sequencing, array comparative genomic hybridization, fluorescent in�situ hybridization and quantitative PCR, we created an inter-varietal atlas of structural variations and single nucleotide variants (SNVs) for the grapevine genome analyzing four economically and genetically relevant table grapevine varieties. We found 4.8 million SNVs and detected 8% of the grapevine genome to be affected by genomic variations. We identified more than 700 copy number variation (CNV) regions and more than 2000 genes subjected to CNV as potential candidates for phenotypic differences between varietiesItem Open Access mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications(Oxford University Press, 2014) Hach, F.; Sarrafi, I.; Hormozdiari, F.; Alkan C.; Eichler, E. E.; Sahinalp, S. C.High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or more) in the multi-mapping mode. Furthermore, mrsFAST-Ultra has an index size of 2GB for the entire human reference genome, which is roughly half of that of Bowtie2. mrsFAST-Ultra is open source and it can be accessed at http://mrsfast.sourceforge.net. © 2014 The Author(s).Item Open Access Mutations in RAD21 disrupt regulation of apob in patients with chronic intestinal pseudo-obstruction(W.B. Saunders, 2015) Bonora, E.; Bianco, F.; Cordeddu, L.; Bamshad, M.; Francescatto, L.; Dowless, D.; Stanghellini, V.; Cogliandro, R. F.; Lindberg, G.; Mungan, Z.; Cefle, K.; Ozcelik, T.; Palanduz, S.; Ozturk, S.; Gedikbasi, A.; Gori, A.; Pippucci, T.; Graziano, C.; Volta, U.; Caio, G.; Barbara, G.; D'Amato, M.; Seri, M.; Katsanis, N.; Romeo, G.; De Giorgio, R.Background Aims Chronic intestinal pseudo-obstruction (CIPO) is characterized by severe intestinal dysmotility that mimics a mechanical subocclusion with no evidence of gut obstruction. We searched for genetic variants associated with CIPO to increase our understanding of its pathogenesis and to identify potential biomarkers. Methods We performed whole-exome sequencing of genomic DNA from patients with familial CIPO syndrome. Blood and lymphoblastoid cells were collected from patients and controls (individuals without CIPO); levels of messenger RNA (mRNA) and proteins were analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblot, and mobility shift assays. Complementary DNAs were transfected into HEK293 cells. Expression of rad21 was suppressed in zebrafish embryos using a splice-blocking morpholino (rad21a). Gut tissues were collected and analyzed. Results We identified a homozygous mutation (p.622, encodes Ala>Thr) in RAD21 in patients from a consanguineous family with CIPO. Expression of RUNX1, a target of RAD21, was reduced in cells from patients with CIPO compared with controls. In zebrafish, suppression of rad21a reduced expression of runx1; this phenotype was corrected by injection of human RAD21 mRNA, but not with the mRNA from the mutated p.622 allele. rad21a Morpholino zebrafish had delayed intestinal transit and greatly reduced numbers of enteric neurons, similar to patients with CIPO. This defect was greater in zebrafish with suppressed expression of ret and rad21, indicating their interaction in the regulation of gut neurogenesis. The promoter region of APOB bound RAD21 but not RAD21 p.622 Ala>Thr; expression of wild-type RAD21 in HEK293 cells repressed expression of APOB, compared with control vector. The gut-specific isoform of APOB (APOB48) is overexpressed in sera from patients with CIPO who carry the RAD21 mutation. APOB48 also is overexpressed in sporadic CIPO in sera and gut biopsy specimens. Conclusions Some patients with CIPO carry mutations in RAD21 that disrupt the ability of its product to regulate genes such as RUNX1 and APOB. Reduced expression of rad21 in zebrafish, and dysregulation of these target genes, disrupts intestinal transit and the development of enteric neurons.Item Open Access Novel VLDLR microdeletion identified in two Turkish siblings with pachygyria and pontocerebellar atrophy(Springer, 2010) Kolb, L. E.; Arlier, Z.; Yalcinkaya, C.; Ozturk, A. K.; Moliterno, J. A.; Erturk, O.; Bayrakli, F.; Korkmaz, B.; DiLuna, M. L.; Yasuno, K.; Bilguvar, K.; Ozcelik, T.; Tuysuz, B.; State, M. W.; Gunel, M.Congenital ataxia with cerebellar hypoplasia is a heterogeneous group of disorders that presents with motor disability, hypotonia, incoordination, and impaired motor development. Among these, disequilibrium syndrome describes a constellation of findings including non-progressive cerebellar ataxia, mental retardation, and cerebellar hypoplasia following an autosomal recessive pattern of inheritance and can be caused by mutations in the Very Low Density Lipoprotein Receptor (VLDLR). Interestingly, while the majority of patients with VLDL-associated cerebellar hypoplasia in the literature use bipedal gait, the previously reported patients of Turkish decent have demonstrated similar neurological sequelae, but rely on quadrupedal gait. We present a consanguinous Turkish family with two siblings with cerebellar atrophy, predominantly frontal pachygyria and ataxic bipedal gait, who were found to have a novel homozygous deletion in the VLDLR gene identified by using high-density single nucleotide polymorphism microarrays for homozygosity mapping and identification of CNVs within these regions. Discovery of disease causing homozygous deletions in the present Turkish family capable of maintaining bipedal movement exemplifies the phenotypic heterogeneity of VLDLR-associated cerebellar hypoplasia and ataxia.Item Open Access Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges(Royal Society of Chemistry, 2016) Toren, P.; Ozgur E.; Bayındır, MehmetThis review targets diversified oligonucleotide-based biodetection techniques, focusing on the use of microresonators of whispering gallery mode (WGM) type as optical biosensors mostly integrated with lab-on-a-chip systems. On-chip and microfluidics combined devices along with optical microresonators provide rapid, robust, reproducible and multiplexed biodetection abilities in considerably small volumes. We present a detailed overview of the studies conducted so far, including biodetection of various oligonucleotide biomarkers as well as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs) and proteins. We particularly advert to chemical surface modifications for specific and selective biosensing.Item Open Access A utility maximizing and privacy preserving approach for protecting kinship in genomic databases(2017-03) Kale, GülceRapid and low cost sequencing of genomic data enables widespread use of genomic information in research studies and personalized customer applications, where people share their genomic data in public databases. Although the identities of the participants are anonymized in these databases, sensitive information about individuals can still be inferred if the stored data is not shared in a privacypreserving manner. Proper handling of kinship information is one such caveat that needs to be addressed to avoid exposure of privacy-sensitive information. In this work, we show that by using only the publicly available single nucleotide polymorphism (SNP) data of anonymized individuals, kinship relationships can be inferred. We present two scenarios that result in privacy leakage; one based on genomic similarity of the individuals; the other, through the outlier allele pair counts of the family members. In the proposed models, we assume that the family members join to the database sequentially and we systematically identify minimal portions of data to withhold as the new participants are added to the database. Choosing the proper positions to hide is cast as an optimization problem. Therein, the number of positions to mask is minimized subject to several privacy constraints that ensure the kinship information among any pair of the family members is not leaked. We evaluate the proposed technique on real genomic data of two different families of size five by considering different sequential arrival orders for the family members. Results indicate that concurrent sharing of data pertaining to a parent and an of spring results in high risks of privacy leakages, whereas the sharing data from further relatives together is often safer. We also show that different arrival orders of the members can lead to different levels of privacy risks and the utility of shared data can vary. Adoption of the proposed method shall allow safe sharing of genomic data in terms of kinship privacy in future research studies and public genomic services.