Browsing by Subject "Semiconductor junctions"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Ab-initio electron transport calculations of carbon based string structures(American Physical Society, 2004) Tongay, S.; Senger, R. T.; Dag, S.; Çıracı, SalimThe new stable structures of carbon-based strings and their unusual electronic transport properties were discussed. Total energy and electronic structure calculations using first principles pseudopotential plane wave method within density functional theory (DFT) and supercell geometries were also carried out. It was found that carbon chains were suitable for structural and chemical functionalizations because of their flexibility. These carbon chains also form stable ring, helix, grid and network structures. The results show that the double covalent bonding of carbon atoms underlies their unusual chemical, mechanical and transport properties and carbon chains can form stable string structures with impressive physical properties.Item Open Access Communication: Enhancement of dopant dependent x-ray photoelectron spectroscopy peak shifts of Si by surface photovoltage(2011) Sezen, H.; Süzer, ŞefikBinding energies measured by x-ray photoelectron spectroscopy (XPS) are influenced by doping, since electrons are transferred to (p-type) and from (n-type) samples when they are introduced into the spectrometer, or brought into contact with each other (p-n junction). We show that the barely measurable Si2p binding energy difference between moderately doped n- and p-Si samples can be enhanced by photoillumination, due to reduction in surface band-bending, which otherwise screens this difference. Similar effects are also measured for samples containing oxide layers, since the band-bending at the buried oxide-Si interfaces is manifest as photovoltage shifts, although XPS does not probe the interface directly. The corresponding shift for the oxide layer of the p-Si is almost twice that of without the oxide, whereas no measurable shifts are observable for the oxide of the n-Si. These results are all related to band-bending effects and are vital in design and performance of photovoltaics and other related systems.Item Open Access Dependence of the substrate structure and the film growth at the junction of YBCO SEJ rf-SQUIDs on the IBE process and effects on the SQUID's characteristics(Elsevier, 2002) Fardmanesh, Mehdi; Schubert, J.; Akram, Rizwan; Banzet, M.; Zander, W.; Zhang, Y.; Schilling, M.; Krause, H-J.Step edge junction (SEJ) rf-SQUIDs were made of 200 nm thick YBCO films on LaAlO3(100) substrates using pulsed laser deposition technique. The steps on the substrates were developed using a combination of stationary and rotating angled argon ion beams with different beam energies and intensities. While sharp clean steps with heights up to 300 nm were obtained on the substrates using the combinatorial ion beam etching (IBE) process, very shallow ramp-type surfaces were found developing on the bottom of the trench, close to the steps. The ramp-type surfaces were found to be a source of hole-type defects in the films grown at the step edges. High quality films could be obtained on the flat regions away from the steps. Higher defect densities in the films close to the SEJs resulted in devices with higher 1/f noise and wider spread of the junction parameters. The 1/f noise of such devices increased with decreasing temperature. High quality films on sharp clean steps with flat substrate surfaces, developed using optimized combinatorial IBE process, resulted in higher yield of low 1/f noise SQUIDs. The Ic of the junctions and hence the working temperature of the SQUID could also be controlled by the junction width and the step height.Item Open Access Lateral and vertical heterostructures of h-GaN/h-AlN: electron confinement, band lineup, and quantum structures(American Chemical Society, 2017-11) Onen, A.; Kecik, D.; Durgun, Engin; Çıracı, SalimLateral and vertical heterostructures constructed of two-dimensional (2D) single-layer h-GaN and h-AlN display novel electronic and optical properties and diverse quantum structures to be utilized in 2D device applications. Lateral heterostructures formed by periodically repeating narrow h-GaN and h-AlN stripes, which are joined commensurately along their armchair edges, behave as composite semiconducting materials. Direct-indirect characters of the fundamental band gaps and their values vary with the widths of these stripes. However, for relatively wider stripes, electronic states are confined in different stripes and make a semiconductor-semiconductor junction with normal band alignment. This way one-dimensinonal multiple quantum well structures can be generated with electrons and holes confined to h-GaN stripes. Vertical heterostructures formed by thin stacks of h-GaN and h-AlN are composite semiconductors with a tunable fundamental band gap. However, depending on the stacking sequence and number of constituent sheets in the stacks, the vertical heterostructure can transform into a junction, which displays staggered band alignment with electrons and holes separated in different stacks. The weak bonds between the cations and anions in adjacent layers distinguish these heterostructures from those fabricated using thin films of GaN and AlN thin films in wurtzite structure, as well as from van der Waals solids. Despite the complexities due to confinement effects and charge transfer across the interface, the band diagram of the heterostructures in the direct space and band lineup are conveniently revealed from the electronic structure projected to the atoms or layers. Prominent features in the optical spectra of the lateral composite structures are observed within the limits of those of 2D parent constituents; however, significant deviations from pristine 2D constituents are observed for vertical heterostructures. Important dimensionality effects are revealed in the lateral and vertical heterostructures.Item Open Access Semiconductor-less photovoltaic device(IEEE, 2013) Atar, Fatih B.; Battal, Enes; Aygun, Levent E.; Dağlar, Bihter; Bayındır, Mehmet; Okyay, Ali KemalWe demonstrate a novel semiconductor-less photovoltaic device and investigate the plasmonic effects on this device structure. The device is made of metal and dielectric layers and the operation is based on hot carrier collection. We present the use of surface plasmons to improve energy conversion efficiency. The field localization provided by surface plasmons confine the incident light in the metal layer, increasing the optical absorption and hot electron generation rate inside the metal layer. The device consists of two tandem MIM (metal-insulator-metal) junctions. Bottom MIM junction acts as a rectifying diode and top MIM junction is used to excite surface plasmons. The device operation principle as well as the topology will be discussed in detail. © 2013 IEEE.