Communication: Enhancement of dopant dependent x-ray photoelectron spectroscopy peak shifts of Si by surface photovoltage
Date
Authors
Advisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
Binding energies measured by x-ray photoelectron spectroscopy (XPS) are influenced by doping, since electrons are transferred to (p-type) and from (n-type) samples when they are introduced into the spectrometer, or brought into contact with each other (p-n junction). We show that the barely measurable Si2p binding energy difference between moderately doped n- and p-Si samples can be enhanced by photoillumination, due to reduction in surface band-bending, which otherwise screens this difference. Similar effects are also measured for samples containing oxide layers, since the band-bending at the buried oxide-Si interfaces is manifest as photovoltage shifts, although XPS does not probe the interface directly. The corresponding shift for the oxide layer of the p-Si is almost twice that of without the oxide, whereas no measurable shifts are observable for the oxide of the n-Si. These results are all related to band-bending effects and are vital in design and performance of photovoltaics and other related systems.