Browsing by Subject "Quantum wires"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Characteristic equations for the lasing Modes of infinite periodic chain of quantum wires(IEEE, 2008-06) Byelobrov, V. O.; Benson, T. M.; Altıntaş, Ayhan; Nosich, A.I.In this paper, we study the lasing modes of a periodic open optical resonator. The resonator is an infinite chain of active circular cylindrical quantum wires standing in tree space. Characteristic equations for the frequencies and associated linear thresholds of lasing are derived. These quantities are considered as eigenvalues of specific electromagnetic-field problem with "active" imaginary part of the cylinder material's refractive index - Lasing Eigenvalue Problem (LEP). ©2008 IEEE.Item Open Access Effect of cross-sectional geometry on the RPA plasmons of quantum wires(Pergamon Press, 1994) Bennett, C. R.; Tanatar, Bilal; Constantinou, N. C.; Babiker, M.The effect of cross-sectional geometry on both the intrasubband plasmon and intersubband plasmon of a quantum wire is investigated within a two-subband RPA scheme. Exact analytical electronic wavefunctions for circular, elliptical and rectangular wires are employed within the infinite barrier approximation. It is found that for fixed cross-sectional area and linear electron concentration, the intrasubband plasmon energy is only marginally dependent on the wire geometry whereas the intersubband plasmon energy may change considerably due to its dependence on the electronic subband energy difference. © 1994.Item Open Access Lasing modes of infinite periodic chain of quantum wires(IEEE, 2009-06-07) Byelobrov, V. O.; Benson, T. M.; Sewell, P.; Altıntaş, Ayhan; Nosich, A. I.In this paper, we study the scattering and eigenvalue problems for a periodic open optical resonator that is an infinite chain of active circular cylindrical quantum wires standing in free space. The scattering problem is solved by the method of partial separation of variables. The eigenvalue problem differs from the first one by the absence of the incident field and presence of "active properties" of cylinders and yields the frequencies and thresholds of lasing. ©2009 IEEE.Item Open Access Raman scattering from confined phonons in GaAs/AlGaAs quantum wires(Academic Press, 1998) Bairamov, B. H.; Aydınlı, Atilla; Tanatar, Bilal; Güven, K.; Gurevich, S.; Mel'tser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Smirnitskii, V. B.; Timofeev, F. N.We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al 0.3Ga 0.7As quantum-well wires with effective wire widths of L = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at ω L10 = 285.6 cm -1 for L = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderlein† as applied to the GaAs/Al 0.3Ga 0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques. © 1998 Academic Press.Item Open Access Thermoelectric efficiency in model nanowires(2013) Badalov, SabuhiNowadays, the use of thermoelectric semiconductor devices are limited by their low efficiencies. Therefore, there is a huge amount of research effort to get high thermoelectric efficient materials with a fair production value. To this end, one important possibility for optimizing a material’s thermoelectric properties is reshaping their geometry. The main purpose of this thesis is to present a detailed analysis of thermoelectric efficiency of 2 lead systems with various geometries in terms of linear response theory, as well as 3 lead nanowire system in terms of the linear response and nonlinear response theories. The thermoelectric efficiency both in the linear response and nonlinear response regime of a model nanowire was calculated based on Landauer-B¨uttiker formalism. In this thesis, first of all, the electron transmission probability of the system at the hand, i.e. 2 lead or 3 lead systems are investigated by using R-matrix theory. Next, we make use of these electron transmission probability of model systems to find thermoelectric transport coefficients in 2 lead and 3 lead nanowires. Consequently, the effect of inelastic scattering is incorporated with a fictitious third lead in the 3 lead system. The efficiency at maximum power is especially useful to define the optimum working conditions of nanowire as a heat engine. Contrary to general expectation, increasing the strength of inelastic scattering is shown to be a means of making improved thermoelectric materials. A controlled coupling of the nanowire to a phonon reservoir for instance could be a way to increase the efficiency of nanowires for better heat engines.