Raman scattering from confined phonons in GaAs/AlGaAs quantum wires

Series

Abstract

We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al 0.3Ga 0.7As quantum-well wires with effective wire widths of L = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at ω L10 = 285.6 cm -1 for L = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderlein† as applied to the GaAs/Al 0.3Ga 0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques. © 1998 Academic Press.

Source Title

Superlattices and Microstructures

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English